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A deep generative model for molecule
optimization via one fragment modification

Ziqi Chen’, Martin Rengiang Min?, Srinivasan Parthasarathy'? and Xia Ning ©®'34X

Molecule optimization is a critical step in drug development to improve the desired properties of drug candidates through
chemical modification. We have developed a novel deep generative model, Modof, over molecular graphs for molecule optimiza-
tion. Modof modifies a given molecule through the prediction of a single site of disconnection at the molecule and the removal
and/or addition of fragments at that site. A pipeline of multiple, identical Modof models is implemented into Modof-pipe to
modify an input molecule at multiple disconnection sites. Here we show that Modof-pipe is able to retain major molecular scaf-
folds, allow controls over intermediate optimization steps and better constrain molecule similarities. Modof-pipe outperforms
the state-of-the-art methods on benchmark datasets. Without molecular similarity constraints, Modof-pipe achieves 81.2%
improvement in the octanol-water partition coefficient, penalized by synthetic accessibility and ring size, and 51.2%, 25.6%
and 9.2% improvement if the optimized molecules are at least 0.2, 0.4 and 0.6 similar to those before optimization, respec-
tively. Modof-pipe is further enhanced into Modof-pipe™ to allow modification of one molecule to multiple optimized ones.

Modof-pipe™ achieves additional performance improvement, at least 17.8% better than Modof-pipe.

olecule optimization is a critical step in drug discovery

for improving the desired properties of drug candidates

through chemical modification. For example, in lead
optimization’ (molecules showing both activity and selectivity
towards a given target), the chemical structures of the lead mol-
ecules can be altered to improve their selectivity and specificity.
Conventionally, such a molecule optimization process is planned
based on knowledge and experiences from medicinal chemists,
and is carried out via fragment-based screening or synthesis*™.
Thus, it is not scalable or automated. Recent in silico approaches
using deep learning have enabled alternative computationally gen-
erative processes to accelerate the conventional paradigm. These
deep-learning methods learn from string-based molecule repre-
sentations (SMILES)®” or molecular graphs®’, and generate new
ones accordingly (for example, via connecting atoms and bonds)
with better properties. Although computationally attractive, these
methods do not conform to the in vitro molecule optimization pro-
cess in one very important aspect: molecule optimization needs to
retain the major scaffold of a molecule, but generating entire, new
molecular structures may not reproduce the scaffold. Therefore,
these methods are limited in their potentials to inform and direct
in vitro molecule optimization.

We propose a novel generative model for molecule optimiza-
tion that better approximates in silico chemical modification. Our
method is referred to as ‘modifier with one fragment, or Modof.
Following the idea of fragment-based drug design'®'!, Modof pre-
dicts a single site of disconnection at a molecule and modifies the
molecule by changing the fragments (for example, ring systems,
linkers and side chains) at that site. Distinctly from existing mol-
ecule optimization approaches that encode and decode whole
molecular graphs, Modof learns from and encodes the difference
between molecules before and after optimization at one discon-
nection site. To modify a molecule, Modof generates only one frag-
ment that instantiates the expected difference by decoding a sample

drawn from the latent ‘difference’ space. Modof then removes the
original fragment at the disconnection site, and attaches the gener-
ated fragment at the site. Figure 1 presents an overview of Modof.
By sampling multiple times, Modof is able to generate multiple opti-
mized candidates. A pipeline of multiple, identical Modof models,
denoted Modof-pipe, is implemented to optimize molecules at mul-
tiple disconnection sites through different Modof models iteratively,
with the output molecule from one Modof model as the input to the
next. Modof-pipe is further enhanced into Modof-pipe™ to allow
modification of one molecule into multiple optimized ones as the
final output.
Modof has the following advantages:

+ It modifies one fragment at a time. It better approximates the
in vitro chemical modification and retains the majority of
molecular scaffolds. Thus, it potentially better informs and
directs in vitro molecule optimization.

It only encodes and decodes the fragment that needs modifica-
tion and facilitates better modification performance.

» Modof-pipe modifies multiple fragments at different disconnec-
tion sites, iteratively. It enables easier control over and intuitive
deciphering of the intermediate modification steps, and facili-
tates better interpretability of the entire modification process.

« Modof s less complex than the state of the art. It has at least 40%
fewer parameters and uses 26% less training data.

o Modof-pipe outperforms the state-of-the-art methods on
benchmark datasets in optimizing the octanol-water parti-
tion coefficient penalized by synthetic accessibility (SA) and
ring size, with 81.2% improvement without molecular similar-
ity constraints on the optimized molecules, and 51.2%, 25.6%
and 9.2% improvement if the optimized molecules need to be at
least 0.2, 0.4 and 0.6 similar (in Tanimoto coefficient over 2,048-
dimensional (2,048D) Morgan fingerprints with radius of 2) to
those before optimization, respectively.
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Table 1| Overall comparison on optimizing plogP

Model 6=0.0 6=0.2 6=04 6=0.6
Imprv +s.d. Sim +s.d. Imprv +s.d. Sim+s.d. Imprv +s.d. Sim+s.d. Imprv +s.d. Sim +s.d.

JT-VAE 191+£2.04 0.28+0.15 1.68 +1.85 0.33+0.13 0.84+145 0.51+0.10 0.21+£0.71 0.69+0.06
GCPN 4.20+1.28 0.32+0.12 412+119 0.34+0Mm 2.49+1.30 0.47 £0.08 0.79+0.63 0.68+0.08
JTNN - - - - 3.55+1.54 0.46+0.06 2.33+119 0.66+0.05
HierG2G - - - - 3.98+1.46 0.46+0.06 249+1.09 0.66+0.05
GraphAF 294 +1.55 0.31£0.15 2.65+1.29 0.35+0.12 1.62+116 0.51+0.10 0.34+046 0.69+0.06
MoFlow 2.39+147 0.54+0.22 2.26+1.37 0.59+0.17 2.04+1.24 0.65+0.12 1.46+1.09 0.71+0.07
Modof-pipe 7.61+2.30 0.21£0.15 6.23+1.77 0.34+0.12 5.00+153 0.48+0.09 272+1.53 0.65+0.05
Modof-pipe™  9.37+2.04 0.12+0.08 758 +1.65 0.27+0.07 5.89+157 0.46+0.06 314+177 0.65+0.05

Impry, the average improvement in plogP; s.d., standard deviation; sim, similarity between the original molecules M, and optimized molecules M,; -, not reported in the literature. We calculated ‘sim+s.d.'
for JTNN and HierG2G using the optimized molecules provided by JTNN and our reproduced results for HierG2G, respectively.

o Modof-pipe™ improves the performance of Modof-pipe by at
least 17.8%.

o Modof-pipe™ and Modof-pipe also show superior performance
on two other benchmarking tasks, optimizing molecule binding
affinities against the dopamine D2 receptor and improving the
drug-likeness estimated by quantitative measures.

Related work

A variety of deep generative models have been developed to generate
molecules with desired properties. These generative models include
reinforcement learning (RL)-based models, generative adversarial
networks (GAN)-based models, flow-based generative models and
variational autoencoder (VAE)-based models, among others. Among
RL-based models, You et al.” developed a graph convolutional policy
network (GCPN) to sequentially add new atoms and corresponding
bonds to construct new molecules. In the flow-based models, Shi
et al.”” developed an autoregressive model (GraphAF), in which they
learned an invertible mapping between Gaussian distribution and
molecule structures, and applied RL to fine-tune the generation pro-
cess. Zang and Wang"’ developed a flow-based method (MoFlow) in
which they utilized bond flow to learn an invertible mapping between
bond adjacency tensors and Gaussian distribution, and then applied
a graph conditional flow to generate an atom-type matrix given
the bond adjacency tensors. VAE-based generative models are also
very popular in molecular graph generation. Jin et al.* first decom-
posed a molecular graph into a junction tree of chemical substruc-
tures, and then used a junction tree VAE (JT-VAE) to generate and
assemble new molecules. Jin et al.'"* developed a junction tree-based
encoder-decoder neural model (JTNN), which learns a translation
mapping between a pair of molecules to optimize one into another.
Jin et al.” replaced the small chemical substructures used in JT-VAE
with larger graph motifs, and modified JTNN into an autoregressive
hierarchical encoder-decoder model (HierG2G). Additional related
work including fragment-based VAE', Teacher and Student polish
(T&S polish)", scaffold-based VAE' and other genetic algorithm-
based methods'*” are discussed in Supplementary Section 1.

The existing generative methods typically encode the entire
molecular graphs and generate whole, new molecules from an empty
or a randomly selected structure. Unlike these methods, Modof
learns from and encodes the difference between molecules before
and after optimization. The learning and generative processes are
thus less complex and are able to retain major molecular scaffolds.

Problem definition

Following Jin et al.%, we focused on the optimization of the partition
coefficients (logP) measured by Crippen logP (ref. *') and penal-
ized by SA** and ring size. Crippen logP is a predicted value of the
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experimental logP using the Wildman and Crippen approach”, and
has been demonstrated to have a strong correlation (for example,
r?=0.918; ref. *') with the experimental logP. Because it is impracti-
cal to measure the experimental logP values for a large set of mol-
ecules, such as our training set (Supplementary Section 3), or for
in silico generated molecules, using Crippen logP will enable scal-
able learning from a large set of molecules, and effective yet accu-
rate evaluation on in silico-optimized molecules. The combined
measurement of logP, SA and ring size is referred to as penalized
logP, denoted plogP. Higher plogP values indicate higher molecule
concentrations in the lipid phase with potentially good SA and
simple ring structures. Note that Modof can be used to optimize
other properties as well, with the property of interest used instead
of plogP. The optimization of other properties is discussed in
Supplementary Section 11. Optimizing multiple properties simulta-
neously is discussed in Supplementary Section 12. In the rest of this
Article, ‘property’ is by default referred to plogP.

Problem definition: Given a molecule My, molecule optimiza-
tion aims to modify M, into another molecule M, such that (1) M, is
similar to M, in its molecular structures (similarity constraint), that
is, sim(My, M,)>6 (6 is a threshold), and (2) M, is better than M,
in the property of interest (for example, plogP(M,) > plogP(M))
(property constraint).

Materials

Data. We used the benchmark training dataset provided by Jin and
colleagues’. This dataset was extracted from the ZINC dataset™*
and contains 74,887 pairs of molecules. Every two paired molecules
are similar in their molecule structures but different in their plogP
values. Using the DF-GED? algorithm, we extracted 55,686 pairs of
molecules from Jin’s training dataset such that each extracted pair
had only one disconnection site. That is, our training data amount
to 26% less than in Jin's dataset. We used these extracted pairs of
molecules (104,708 unique molecules) as our training data. Details
about training data generation are discussed in the next section. We
used Jins validation set for parameter tuning, and tested on Jin’s test
dataset of 800 molecules. More details about the training data are
provided in Supplementary Section 3.

Training data generation. We used a pair of molecules (M,, M,) as a
training instance in Modof, where M, and M, satisfy both the simi-
larity and property constraints, and M, is different from M, in only
one fragment at one disconnection site. We constructed such train-
ing instances as follows. We first quantified the difference between
M, and M, using the optimal graph edit distance’ between their
junction tree representations 7, and 7,, and derived the optimal edit
paths to transform 7; to 7,. Such quantification also identified dis-
connection sites at M, during its graph comparison. Details about
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Fig. 1| Modof model overview. a, The Modof-encoder. Modof first generates atom embeddings of My/M, over molecular graphs G,/ Gy using GMPNs,
as well as node embeddings over corresponding junction trees 7/ 7, using TMPNs. The difference between 7y and 7, at the disconnection site (circles

in Tx/Ty) is encoded (DE) into h;, and h;[,,

which then construct two normal distributions z;, and z:f,. b, The Modof-decoder. Using z,,, Modof conducts

disconnection site prediction (DSP) to identify site nq. At neighbours of ng, Modof conducts removal fragment prediction (RFP) to remove the fragment
at ng. Then, Modof produces an intermediate representation (IMR) of the remaining scaffold (G*, 7). Over (G*, T*), Modof performs new fragment
attachment (NFA) by interactively performing child node connection prediction (NFA-cp), child node type prediction (NFA-ntp) and attachment point
prediction (NFA-app) to optimize My. In molecule representations, substructures in molecular graphs and their corresponding nodes in junction trees are

coded in the same colours.

this process is available in Supplementary Section 4. Identified mol-
ecule pairs satisfying similarity and property constraints with only
one site of disconnection were used as training instances. For a pair
of molecules with a high similarity (for example, above 0.6), it is
very likely that they have only one disconnection site, as demon-
strated in Supplementary Section 5.

Molecule similarity calculation. We used 2,048D binary Morgan
fingerprints with radius of 2 to represent molecules and used the
Tanimoto coefficient to measure molecule similarities.

Baseline methods. We compared Modof with state-of-the-art
baseline methods for molecule optimization, including JT-VAE?,
GCPN’, JTNN", HierG2G'®, GraphAF'? and MoFlow'*:

o JT-VAE encodes and decodes junction trees and assembles new,
entire molecular graphs based on decoded junction trees.

«  GCPN applies a graph convolutional policy network and itera-
tively generates molecules by adding atoms and bonds, one by
one.

o JTNN learns from molecule pairs and performs molecule opti-
mization to translate molecular graphs.

+ HierG2G encodes molecular graphs in a hierarchical fashion,
and generates new molecules by generating and connecting
structural motifs.

o GraphAF learns an invertible mapping between a prior distribu-
tion and molecular structures, and uses reinforcement learning
to fine-tune the model for molecule optimization.

« MoFlow learns an invertible mapping between bond adjacency
tensors and Gaussian distribution, and then applies a graph con-
ditional flow to generate an atom-type matrix as the representa-
tion of a new molecule from the mapping.

Experimental results

Overall comparison on plogP optimization. Table 1 presents an
overall comparison of Modof-pipe and Modof-pipe™, both with a
maximum of five iterations, and the baseline methods on plogP
optimization. Note that Modof-pipe™ outputs 20 optimized mol-
ecules, as do JTNN and HierG2G. Following GCPN, an addi-
tional constraint of molecule size is imposed into Modof-pipe
to limit the size of the optimized molecules to be at most 38.
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As Crippen logP tends to be large on large molecules, this addi-
tional constraint also prevents Modof-pipe from improving
logP by simply increasing the molecule size. When there is no
similarity constraint (§=0), that is, it is not required to produce
similar molecules out of the optimization, Modof-pipe is able
to generate highly optimized molecules with substantially bet-
ter plogP improvement (7.61+2.30), with 81.2% improvement
from the best baseline GCPN (4.20 +1.28), although with lower
similarities between the molecules before and after the optimi-
zation. Modof-pipe™ achieves even better performance, with
a plogP improvement of 9.37+2.04, that is, 123.1% better than
GCPN. When the similarity constraint takes effect (for example,
6=0.2, 0.4 and 0.6), Modof-pipe consistently produces molecules
that are similar to those before optimization and also with better
properties. At §=0.2, 0.4 and 0.6, Modof-pipe achieves better
property improvement (6.23+1.77, 5.00+1.53 and 2.72+1.68,
respectively) than all the best baselines (GCPN with 4.12+1.19 at
6=0.2 and HierG2G with 3.98+1.47 at §=0.4 and 2.49+1.09 at
0=0.6), with 51.2%, 25.6% and 9.2% improvement over the base-
lines, respectively, although the baselines generate more similar
molecules than Modof-pipe. Modof-pipe™ achieves the best per-
formance on property improvement (7.58+1.65, 5.89+1.57 and
3.14+1.77, respectively) with 84.0%, 48.0% and 26.1% improve-
ment over the best baselines, respectively.

When 6 is large, we could observe that JTNN and HierG2G tend
to decode more aromatic rings, leading to large molecules with
over-estimated similarities. However, Modof tends to stop if there
are many aromatic rings and thus produces more drug-like mole-
cules”*. Issues related to similarity calculation that will affect opti-
mization performance are discussed in Supplementary Section 7.
Still, the overall comparison demonstrates that Modof-pipe and
Modof-pipe™ outperform or at least achieve similar performance to
state-of-the-art methods.

It is worth noting that our performance is reported on the exact
benchmark test set. In our study, we observed some issues of unfair
comparison in the existing baseline methods. For example, some
baseline methods compared and reported results on a test set other
than the benchmark test set. Some reinforcement learning methods
used the test molecules to either directly train a model or fine-tune a
pre-trained model to optimize the test molecules, which could lead
to artificially high performance**. Detailed discussions on com-
parison fairness are provided in Supplementary Section 8.
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Fig. 2 | Modof-pipe examples for plogP optimization. a, Visualization of popular removal fragments. b, Visualization of popular attaching fragments.
¢, Modof-pipe optimization example with multiple disconnection sites and multiple Modof iterations. d, Local optimization. Disconnection sites are
highlighted in yellow. Modified fragments in each step are highlighted in red. Retained scaffolds after Modof-pipe optimization are highlighted in sky blue.

Numbers associated with My are the corresponding plogP values.

a molecule that is not very drug-like, the objective of optimizing
the QED property is to modify this molecule into a more ‘drug-like’
molecule. Table 2 presents the major results in success rates, prop-
erty improvement and similarity comparison under the similarity
constraint §=0.4. The results demonstrate that Modof-pipe™ sub-
stantially outperforms or is comparable to the baseline methods in
optimizing DRD2 and QED, when the success rates are measured
either using the benchmark metrics'*"® (OM-pic in Table 2) or
based on training data (OM-trn in Table 2). Figure 3a,b presents two
examples of molecule optimization for DRD2 and QED property
improvement. In Fig. 3b, in the first iteration, a 4-methoxyphenyl
group is removed and a small chain of 2-fluoroethyl group is added,
so the number of aromatic rings and the number of hydrogen-bond
acceptors are reduced, which makes the compound more drug-like
than its predecessor. In the second iteration, a cyclooctyl group
is removed from M{" and a 2- -fluorophenyl group is added. This
modification may induce reduced flexibility—another preferred
property of a successful drug. In the following iterations, some com-
monly used fragments in drug design are used to further modify the
molecule into more drug-likeness. Note that, again, QED optimiza-
tion is completely learned from data in an end-to-end fashion with-
out any medicinal chemistry knowledge imposed by experts. The
meaningful optimization in the example in Fig. 3b demonstrates the
interpretability of Modof-pipe. More details about these two optimi-
zation tasks and results are provided in Supplementary Section 11.
We also conducted experiments to optimize both DRD2
and QED properties of molecules simultaneously, that is, a
multi-property optimization task. Details on this multi-property
task and results are provided in Supplementary Section 12. Figure 3¢
presents an example of multi-property molecule optimization, in
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which both the DRD2 and QED scores of the molecule are consis-
tently increased with the iterations of optimization.

Discussion and conclusions

Molecule optimization using simulated properties. Most of the
molecule properties considered in our experiments are based on
simulated or predicted values rather than experimentally measured.
Thatis, an independent simulation or machine learning model is first
used to generate the property values for the benchmark dataset. For
example, Crippen logP is estimated via the Wildman and Crippen
approach”, synthesis accessibility is calculated using a scoring func-
tion over predefined fragments®, the DRD2 property is predicted
using a support vector machine classifier’, and the QED property
is predicted using a nonlinear classifier combining multiple desir-
ability functions of molecular properties™. Although all the existing
generative models for molecule optimization®”*-'%!%*=3" use such
simulated properties, there are both challenges and opportunities.
Challenges arise when the simulation or machine learning mod-
els for those property predictions are not sufficiently accurate for
various reasons (for example, limited or biased training molecules)
and the generative models learned from the inaccurate property
values would also be inaccurate or incorrect, resulting in gener-
ated molecules that could negatively impact the downstream drug
development tasks. However, the opportunities due to the property
simulation or prediction can be immense in fully unleashing the
power of large-scale, data-driven learning paradigms to stimulate
drug development as we continue to improve these simulations and
predictions. Specifically, most deep learning-based models for drug
development purposes, many of which have been demonstrated to
be very promising®, are not possible without large-scale training
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Fig. 3 | Modof-pipe examples for DRD2, QED and multi-property optimization. a, Modof-pipe examples for DRD2 optimization. b, Modof-pipe examples
for QED optimization. ¢, Modof-pipe examples for multi-property optimization of DRD2 and QED. Modified fragments in each step are highlighted in red.

Numbers associated with My are the corresponding property values.

data. Although it is impractical, if even possible, to experimentally
measure the properties of interest for a large set of molecules (for
example, more than 100,000 molecules as in our benchmark train-
ing data), the property simulation or prediction of the molecules
enables large training data and makes the development of such deep
learning methodologies possible. Fortunately, property prediction
simulations or models have become more accurate (for example,
98% accuracy for DRD2) due to the accumulation of experimental
measurements® and the strong learning power of innovative compu-
tational approaches. The accurate property simulation or prediction
over large-scale molecule data and the powerful learning capabil-
ity of generative models from such molecule data will together have
strong potential to further advance in silico drug development.

Synthesizability and retrosynthesis. Our experiments show that
Modof is also able to improve synthesis accessibility (Supplementary
Section 9.4). However, it does not necessarily mean that the gener-
ated molecules can be easily synthesized. This limitation of Modof
is actually common to almost all the computational approaches for
molecule generation. A recent study has shown that many mol-
ecules generated via deep learning are not easily synthesizable®,
which limits the translational potentials of the generative models
in making real impacts in drug development. On the other hand,
retrosynthesis prediction via deep learning, which aims to iden-
tify a feasible synthesis path for a given molecule through learning
and searching from a large collection of synthesis paths, has been
an active research area*-*>. Optimizing molecules towards not only
better properties but also better synthesizability, particularly with
explicit synthesis paths identified simultaneously, could be a highly
interesting and challenging future research direction. Ultimately, we
would like to develop a comprehensive computational framework
that could generate synthesizable molecules with preferable proper-
ties. This would require not only a substantial amount of data to
train sophisticated models, but also necessary domain knowledge
and human experts looped into the learning process.

In vitro validation. Ultimately, testing of the in silico-generated
molecules in a laboratory will be needed to validate the computa-
tional methods. Although most existing computational methods
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are developed in academic environments and thus cannot be easily
tested on purchasable or proprietary molecule libraries, and their
generated molecules cannot be easily synthesized as we discussed
earlier, a few successful stories” have demonstrated that powerful
computational methods have great potential to truly make new dis-
coveries that can succeed in laboratory validation. Analogous to this
molecule optimization and discovery process using deep learning
approaches is AlphaFold", a deep learning method that predicts
protein folding structures. The breakthrough from AlphaFold in
solving a 50-year-old grand challenge in biology offers strong evi-
dence of the tremendous power of modern learning approaches,
which should not be underestimated. Still, collaborations with the
pharmaceutical industry and in vitro testing are very much needed
to truly translate the progress with computational methods into a
real impact. In addition, effective sampling and/or prioritization of
generated molecules to identify a feasible, small set of molecules for
small-scale in vitro validation could be a practical solution. This will
require the development of new sampling schemes over molecule
subspaces and/or the learning of molecule prioritization*>*® within
the molecule generation process. Meanwhile, large-scale in vitro
validation of in silico-generated molecules is a challenging but
interesting future research direction.

Other issues in computational molecule optimization. A limita-
tion of Modof-pipe is that it employs a local greedy optimization
strategy: in each iteration, the input molecules to Modof will be
optimized to the best, and if the optimized molecules do not have
better properties, they will not go through additional Modof itera-
tions. Detailed discussions about local greedy optimization are pro-
vided in Supplementary Section 13.1. In addition to the partition
coefficient, there are a lot of factors (for example, toxicity and syn-
thesizability) that need to be considered to develop a molecule into
a drug. Discussions about multi-property optimization are available
in Supplementary Section 13.2. Target-specific molecule optimiza-
tion is also discussed in Supplementary Section 13.3. The Modof
framework could also be used for compounds or substance prop-
erty optimization in other application areas (for example, melting
or boiling points for volatiles). Related discussions are presented in
Supplementary Section 13.4.
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Table 3 | Notation

Notation Meaning

M=(GT) Molecule represented by G and T

G = (A B) Molecular graph with atoms A and bonds B
T=WE) Junction tree with nodes V and edges £

a An atomin G

b; A bond connecting atoms g;and g;in G

n Anodein T

€. An edge connecting nodes n,and n, in T

Ny Site of disconnection

A(n), N(n) Atoms included in a tree node n, n's neighbours
X Atom type embedding

m o Concatenation of m®, m®, ... m®

Conclusions. Modof optimizes molecules at one disconnection site
at a time by learning the difference between molecules before and
after optimization. With a much less complex model, it achieves
substantially better or similar performance to state-of-the-art
methods. In addition to the limitations and corresponding future
research directions that have been discussed above, another limita-
tion with Modof is that, in Modof, the modification happens at the
periphery of molecules. Although this is very common in in vitro
lead optimization, we are currently investigating how Modof can be
enhanced to modify the internal regions of molecules, if needed, by
learning from proper training data with such regions. Additionally,
we hope to integrate domain-specific knowledge in the Modof
learning process to facilitate increased explainability in the learning
and generative process.

Methods

Modof modifies one fragment (for example, a ring system, a linker, a side chain) of
amolecule at a time, and thus only encodes and decodes the fragment that needs
modification. The site of M where the fragment is modified is referred to as the site
of disconnection and denoted n4, which corresponds to a node in the junction tree
representation (discussed in the section Molecule representations and notations).
Figure 1 presents an overview of Modof. All the algorithms are presented in
Supplementary Section 14. Discussions on the single-disconnection-site rationale
are presented in Supplementary Section 5.

Molecule representations and notations. We represent a molecule M, using a
molecular graph G, and a junction tree 7. G is denoted G, = (A, By), where
Ay is the set of atoms in My, and B, is the set of corresponding bonds. In the
junction tree representation, 7x = (Vi, &) (ref. ¥), all the rings and bonds in

M, are extracted as nodes in V,, and nodes with common atoms are connected
with edges in &,. Thus, each node n € V, is a substructure (for example, a ring,

a bond and its connected atoms) in G,. We denote the atoms included in node n
as A(n) and refer to the nodes connected to n in 7 as its neighbours, denoted
N (n). Thus, each edge (n,, n,) € E actually corresponds to the common atoms
Ay (n,) N Ax(n,) between n, and n,. When no ambiguity arises, we will eliminate
subscript x in the notations. Note that atoms and bonds are the terms used for
molecular graph representations, and nodes and edges are used for junction tree
representations. In this Article, all the embedding vectors are by default column
vectors, represented by lower-case bold letters; all the matrices are represented by
upper-case letters. Key notations are listed in Table 3.

Molecular difference encoder (Modof-encoder). Given two molecules ( M,,
M,), Modof (algorithm 1 in Supplementary Section 14) learns and encodes the
difference between M, and M, using message passing networks*’ over graphs G,
and Gy, denoted graph message passing networks (GMPNs), and over junction
trees 7Ty and 7, denoted tree message passing networks (TMPNs), in three steps.

Step 1 Atom embedding over graphs (GMPN). Modof first represents atoms using
embeddings to capture atom types and their local neighbourhood structures by
propagating messages along bonds over molecular graphs. Modof uses a one-hot
encoding x; to represent the type of atom a;, and a one-hot encoding x; to represent
the type of bond b; connecting a; and a;. Each bond b, is associated with two
messages m; and m;; encoding the messages propagating from atom g, to a; and
vice versa. The mi(j’), in the tth iteration of the GMPN is updated as follows:
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§ t—1
m) = RelU (Wix; + Wix; + W3 » akeN(a)\mmii )
i 7

where m](:) is initialized as zero, and W7 (i=1, 2, 3) are the learnable parameter
matrices. Thus, the message mf.t) encodes the information of all length-# paths
passing through b; to g; in the graph. After ¢, iterations of message passing, the

atom embedding a; is updated as follows:

o , (1)
4 = RelU (Ux; + U;Za,ema,)m"f »

where mf.l ~*14) is the concatenation of message vectors from all iterations, and Uf
and U; are learnable parameter matrices. Thus, the atom embedding a; aggregates
information from a;s £,-hop neighbours, as in Xu et al.*’, to improve the atom
embedding representation power.

Step 2 Node embedding over junction trees (TMPN). Modof encodes nodes in
junction trees into embeddings to capture their local neighbourhood structures
by passing messages along the tree edges. To produce rich representations of
nodes, Modof first aggregates the information of atoms within a node #, into
an embedding s,, and the information of atoms shared by a tree edge e,, into an
embedding s,, through the following pooling:

Su = ZaleA(mah (1)

a;. (2)

Suy =

ZaleA(m)ﬁA("v)

Modof also uses a learnable embedding x, to represent the type of node n,. Thus,
m") from node 1, to n, in the tth iteration of TMPN is updated as follows:

m{) = ReLU(W/ReLU (W [x,8.]) + Wisu + W' m{~),
n, €N (m)\ {n,}

where [x,; s,] is a concatenation of x, and s, so as to represent comprehensive node
information, and W (i=1, 2, 3, 4) are learnable parameter matrices. Similarly to
the messages in GMPNs, m{") encodes the information of all length- paths passing
through edge e, to n, in the tree. After ¢, iterations, the node embedding n, is
updated as follows:

m(lmt,‘))’ 3)

n, = ReLU(U'ReLU (Ui[x,;s,]) + U;“Z" ey ™

where U (i=1, 2, 3) are the learnable parameter matrices.

Step 3 Difference embedding. The difference embedding between M, and M, is
calculated by pooling the node embeddings from 7 and 7, as follows:

h: =
v ane{vx\vy}u{ndevx}nx

>

h+ — s
xy Z,,ye{vy\vx}u{ndevy}ny

where n,/n, are the embeddings of nodes only appearing in and learned from

T/ T, via the TMPN. Note that 4 in the above equations is the site of
disconnection, and both 7; and 7} have the common node n4. Thus, h_ essentially
represents the fragment that should be removed from M, at n4 and hj; represents
the fragment that should be attached to M, at n4 afterwards so as to modify M,
into M,. We will discuss how to identify ng4, and the removed and new attached
fragments at ngq in M, and M, in the section ‘Molecular difference decoder
(Modof-decoder).

As in VAE", we map the two difference embeddings h, and hj}', into two
normal distributions by computing the mean and log variance with fully connected
layers p(-) and X(-). We then sample the latent vectors zZ,, and z;; from these two
distributions and concatenate them into one latent vector z,y, that is:

2, ~ N(u~ (b)), 2" (b)),

z) ~ Nt (), 2 (),

2y = [z52)). (4)
Thus, z., encodes the difference between M, and M,.

Molecular difference decoder (Modof-decoder). Following the autoencoder idea,
Modof decodes the difference embedding z., (equation (4)) into edit operations
that change M, into M,.. Specifically, Modof first predicts a node nq in 7 as the
disconnection site. This node will split 7% into several fragments, and the number
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of resulting fragments depends on the number of n4’s neighbouring nodes A\ (ng).
Modof then predicts which frag ments to remove from M, and merges the
remaining fragments with #4 into an intermediate representation M* = (G*, 7).
After that, Modof attaches new fragments sequentially, starting from rn4 to

(G*, T™). The decoding process (algorithm 2 in Supplementary Section 14) has
four steps.

Step 1 Disconnection site prediction. Modof predicts a disconnection score for each
T/ s node n, as follows:

fi(ny) = (W) tanh(Win, + Wiz),V 1, € Vs (5)

where n, is n,’s embedding (equation (3)) in 7, and w!and W? (i=1,2) are the
learnable parameter vector and matrices, respectively. The node with the largest
disconnection score is predicted as the disconnection site ny. Intuitively, Modof
considers the neighbouring or local structures of , (in n,) and ‘how likely’ edit
operations (represented by z) can be applied at ,. To learn f;, Modof uses the negative
log-likelihood of the ground-truth disconnection site in tree 7 as the loss function.

Step 2 Removal fragment prediction. Modof predicts which fragments separated by
nq should be removed from 7. For each node n, connected to n4, Modof predicts
a removal score as follows:

fe(ma) = o((W)" ReLU (Win, + W5z 7)), Ve,q € Ex (6)

where o(-) is the sigmoid function, and w" and W; (i=1, 2) are the learnable
parameter vector and matrices, respectively. The fragment with a removal score
greater than 0.5 is predicted to be removed. Thus, there could be multiple or

no fragments removed. Intuitively, Modof considers the local structures of

the fragment (that is, n,) and ‘how likely’ this fragment should be removed
(represented by z-). To learn f,, Modof minimizes the binary cross-entropy loss to
maximize the predicted scores of ground-truth removed fragments in 7.

Step 3 Intermediate representation. After fragment removal, Modof merges the
remaining fragments together with the disconnection site 4 into an intermediate
representation M* = (G*, 7). M" may not be a valid molecule after some
fragments are removed (some bonds are broken). It represents the scaffold of

M, that should remain unchanged during optimization. Modof first removes a
fragment so as to identify such a scaffold and then adds a fragment to the scaffold
to modify the molecule.

Step 4 New fragment attachment. Modof modifies M* into the optimized M, by
attaching a new fragment (algorithm 3 in Supplementary Section 14). Modof

uses the following four predictors to sequentially attach new nodes to 7 *. The
predictors will be applied iteratively, starting from n4, on each newly attached node
in 7. The attached new node in the tth step is denoted n*® (n*(©) = n,), and
the corresponding molecular graph and tree are denoted G*® (G*(® = G*) and
T*O (T = T, respectively.

Step 4.1 Child connection prediction (NFA-cp). Modof first predicts whether n* ("
should have a new child node attached to it, with the probability calculated as
follows:

fen™ D) = o((w")" ReLU (Win™ )+ wiz'h)), @)

where n* is the embedding of node n*(® learned over (7*®, G*() (equation
(3)), z* (equation (4)) indicates how much 7* ® should be expanded, and w* and
WE (i=1, 2) are the learnable parameter vector and matrices. If f;(n*("))is above
0.5, Modof predicts that #*( should have a new child node and thus child node
type prediction will follow; otherwise, the optimization process stops at n*(. To
learn f,, Modof minimizes a binary cross-entropy loss to maximize the probabilities
of ground-truth child nodes. Note that n*() may have multiple children, so, once
a child is generated as in the following steps and attached to 7" @), another child
connection prediction will be conducted at n* () with the updated embedding
n*®) over the expanded (7*(®, G*(). The above process is iterated until n*(? is
predicted to have no more children.

Step 4.2 Child node type prediction (NFA-ntp). The new child node of n* (" is
denoted n.. Modof predicts the type of n_ by calculating the probabilities of all
types of node that can be attached to n*(*) as follows:

fi(ne) = softmax(U' x ReLU (Win*® + Wiz™)), 8)

where softmax(-) converts a vector of values into probabilities, and U' and Wz
(i=1, 2) are learnable matrices. Modof assigns the new child 7, the node type
x. corresponding to the highest probability. Modof learns f, by minimizing the
cross-entropy to maximize the likelihood of true child node types.

Step 4.3 Attachment point prediction (NFA-app). If node n*(*) is predicted to
have a child node 7, the next step is to connect #*(*) and n_. If n* ) and n, share
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one or multiple atoms (for example, 7* () and n, form a fused ring and thus share
two adjacent atoms) that can be unambiguously determined as the attachment
point(s) based on chemical rules, Modof will connect n* () and n_ via the atom(s).
Otherwise, if n*(*) and n_have multiple connection configurations, Modof predicts
the attachment atoms at n*(? and n,, respectively.

Step 4.3.1 Attachment point prediction at the parent node (NFA-app-p). Modof
scores each candidate attachment point at parent node n*, denoted a, using

&lay) = (wh)" tanh(Wiay + Whx. + Wi x ReLU (Ui [x* 5% O]) + whzt),
)

whereaj = > _ .a;represents the embedding of a; (a; could be an atom or
abond), a; is calculafed by GMPN over G* ®, Uy, is as in equation (3), §* ) is the
sum of the embeddings of all atoms in n* ® (equation (1)), and w? and Wf (i=1,
2, 3, 4) are the learnable vector and matrices. Modof intuitively measures how
likely a; can be attached to by looking at a; its own (that is, ay), its context in
n*® (that is, x* ) and neighbours §*(), its connecting node #, (that is, x.) and
how much n*( should be expanded (represented by zT). The candidate with
the highest score is selected as the attachment point in #*®) . Modof learns &by
minimizing the negative log-likelihood of ground-truth attachment points.

Step 4.3.2 Attachment point prediction at the child node (NFA-app-c). Modof
scores each candidate attachment point at the child node #,, denoted a7, using

ge(a7) = (W) " tanh(WiaZ + Woxe + Wiay + Wiz"), (10)
where al = 3= _ .4, represents the embedding of a; (a; could be an atom or a
bond) and & is the émbedding of 4, calculated over n, via GMPN, and w° and w?
(i=1,2, 3, 4) are the learnable parameters. Modof intuitively measures how likely
candidate a* can be attached to a* at n* () by looking at a its own (that is, a*), the
features of a* (that is, a’), its context in n_ (that is, x.) and how much n*® should
be expandetf (that is, z*g. The candidate with the highest score is selected as the
attachment point in n.. Modof learns g, by minimizing the negative log-likelihood
of ground-truth attachment points.

Valence checking. In NFA-app, Modof incorporates a valence check to only
generate and predict legitimate candidate attachment points that do not violate
valence laws.

Molecule size constraint. Following You et al.’, for plogP optimization, we limit the
size of the optimized molecules to at most 38 (38 is the maximum number of atoms
in the molecules in the ZINC dataset®’). With this molecule size constraint, Modof
can avoid increasing plogP by trivially increasing the molecule size, which may
have the effect of improving plogP (ref. *°).

Sampling schemes. In the decoding process, for each My, Modof samples 20 times
from the latent space of z and optimizes M, accordingly. Among all decoded
molecules satisfying the similarity constraint with M,, Modof selects the one with
the best property as its output.

Modof pipelines. A pipeline of Modof models, denoted Modof-pipe (algorithm
4 in Supplementary Section 14), is constructed with a series of identical Modof
models, with the output molecule from one Modof model as the input to the next.
Given an input molecule M to the tth Modof model (M©® = M), Modof first
optimizes M into M+ as the output of this model. M“*V is then fed into the
(t+ 1)th model if it satisfies the similarity constraint sim(M"*+Y, M) > § and the
property constraint plogP(M“*) > plogP(M®). Otherwise, M is output as the
final result and Modof-pipe stops. In addition to Modof-pipe, which outputs one
optimized molecule for each input molecule, Modof-pipe™ has been developed
to output multiple optimized molecules for each input molecule. Details about
Modof-pipe™ are provided in Supplementary Section 2.

The advantages of this iterative, one-fragment-at-one-time optimization
process include the following: (1) it is easier to control intermediate optimization
steps so as to result in optimized molecules of desired similarities and properties;
(2) it is easier to optimize multiple fragments in a molecule that are far apart; (3)
it follows a rational molecule design process'' and thus could enable more insights
and inform in vitro lead optimization.

Model training. During model training, we apply teacher forcing to feed the
ground truth instead of the prediction results to the sequential decoding process.
Following the idea of VAE, we minimize the following loss function to maximize
the likelihood P(M, |z, M). Thus, the optimization problem is formulated as

m@in —PDk1(q¢ (2| M, My) || po(2)) + By, (zim,m,) log po(My|z, My)],  (11)

where @ is the set of parameters, q,() is an estimated posterior probability
function (Modof-encoder), py( M, |z, M) is the probabilistic decoder representing
the likelihood of generating M, given the latent embedding z and M,, and the
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prior py(z) follows N (0, I). In the above problem, Dy, () is the Kullback-Leibler
divergence between g,() and p,(). Specifically, the second term represents the
prediction or empirical error, defined as the sum of all the loss functions in the
above six predictions (equations (5) to (10)). We use AMSGRAD"' to optimize the
learning objective.

Data availability
The data used in this manuscript are available publicly from Chen et al.”” and
https://github.com/ziqi92/Modof. Source data are provided with this paper.

Code availability
The code for Modof, Modof-pipe and Modof-pipe™ is publicly available from Chen
et al.”? and https://github.com/ziqi92/Modof.
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