
Articles
https://doi.org/10.1038/s42256-021-00410-2

1Computer Science and Engineering, The Ohio State University, Columbus, OH, USA. 2Machine Learning Department, NEC Labs America, Princeton,
NJ, USA. 3Translational Data Analytics Institute, The Ohio State University, Columbus, OH, USA. 4Biomedical Informatics, The Ohio State University,
Columbus, OH, USA. ✉e-mail: ning.104@osu.edu

Molecule optimization is a critical step in drug discovery
for improving the desired properties of drug candidates
through chemical modification. For example, in lead

optimization1 (molecules showing both activity and selectivity
towards a given target), the chemical structures of the lead mol-
ecules can be altered to improve their selectivity and specificity.
Conventionally, such a molecule optimization process is planned
based on knowledge and experiences from medicinal chemists,
and is carried out via fragment-based screening or synthesis2–5.
Thus, it is not scalable or automated. Recent in silico approaches
using deep learning have enabled alternative computationally gen-
erative processes to accelerate the conventional paradigm. These
deep-learning methods learn from string-based molecule repre-
sentations (SMILES)6,7 or molecular graphs8,9, and generate new
ones accordingly (for example, via connecting atoms and bonds)
with better properties. Although computationally attractive, these
methods do not conform to the in vitro molecule optimization pro-
cess in one very important aspect: molecule optimization needs to
retain the major scaffold of a molecule, but generating entire, new
molecular structures may not reproduce the scaffold. Therefore,
these methods are limited in their potentials to inform and direct
in vitro molecule optimization.

We propose a novel generative model for molecule optimiza-
tion that better approximates in silico chemical modification. Our
method is referred to as ‘modifier with one fragment’, or Modof.
Following the idea of fragment-based drug design10,11, Modof pre-
dicts a single site of disconnection at a molecule and modifies the
molecule by changing the fragments (for example, ring systems,
linkers and side chains) at that site. Distinctly from existing mol-
ecule optimization approaches that encode and decode whole
molecular graphs, Modof learns from and encodes the difference
between molecules before and after optimization at one discon-
nection site. To modify a molecule, Modof generates only one frag-
ment that instantiates the expected difference by decoding a sample

drawn from the latent ‘difference’ space. Modof then removes the
original fragment at the disconnection site, and attaches the gener-
ated fragment at the site. Figure 1 presents an overview of Modof.
By sampling multiple times, Modof is able to generate multiple opti-
mized candidates. A pipeline of multiple, identical Modof models,
denoted Modof-pipe, is implemented to optimize molecules at mul-
tiple disconnection sites through different Modof models iteratively,
with the output molecule from one Modof model as the input to the
next. Modof-pipe is further enhanced into Modof-pipem to allow
modification of one molecule into multiple optimized ones as the
final output.

Modof has the following advantages:

•	 It modifies one fragment at a time. It better approximates the
in vitro chemical modification and retains the majority of
molecular scaffolds. Thus, it potentially better informs and
directs in vitro molecule optimization.

•	 It only encodes and decodes the fragment that needs modifica-
tion and facilitates better modification performance.

•	 Modof-pipe modifies multiple fragments at different disconnec-
tion sites, iteratively. It enables easier control over and intuitive
deciphering of the intermediate modification steps, and facili-
tates better interpretability of the entire modification process.

•	 Modof is less complex than the state of the art. It has at least 40%
fewer parameters and uses 26% less training data.

•	 Modof-pipe outperforms the state-of-the-art methods on
benchmark datasets in optimizing the octanol–water parti-
tion coefficient penalized by synthetic accessibility (SA) and
ring size, with 81.2% improvement without molecular similar-
ity constraints on the optimized molecules, and 51.2%, 25.6%
and 9.2% improvement if the optimized molecules need to be at
least 0.2, 0.4 and 0.6 similar (in Tanimoto coefficient over 2,048-
dimensional (2,048D) Morgan fingerprints with radius of 2) to
those before optimization, respectively.

A deep generative model for molecule
optimization via one fragment modification
Ziqi Chen1, Martin Renqiang Min2, Srinivasan Parthasarathy1,3 and Xia Ning   1,3,4 ✉

Molecule optimization is a critical step in drug development to improve the desired properties of drug candidates through
chemical modification. We have developed a novel deep generative model, Modof, over molecular graphs for molecule optimiza-
tion. Modof modifies a given molecule through the prediction of a single site of disconnection at the molecule and the removal
and/or addition of fragments at that site. A pipeline of multiple, identical Modof models is implemented into Modof-pipe to
modify an input molecule at multiple disconnection sites. Here we show that Modof-pipe is able to retain major molecular scaf-
folds, allow controls over intermediate optimization steps and better constrain molecule similarities. Modof-pipe outperforms
the state-of-the-art methods on benchmark datasets. Without molecular similarity constraints, Modof-pipe achieves 81.2%
improvement in the octanol–water partition coefficient, penalized by synthetic accessibility and ring size, and 51.2%, 25.6%
and 9.2% improvement if the optimized molecules are at least 0.2, 0.4 and 0.6 similar to those before optimization, respec-
tively. Modof-pipe is further enhanced into Modof-pipem to allow modification of one molecule to multiple optimized ones.
Modof-pipem achieves additional performance improvement, at least 17.8% better than Modof-pipe.

NAtuRe MAChiNe iNtelligeNCe | VOL 3 | DECEMBEr 2021 | 1040–1049 | www.nature.com/natmachintell1040

mailto:ning.104@osu.edu
http://orcid.org/0000-0002-6842-1165
http://crossmark.crossref.org/dialog/?doi=10.1038/s42256-021-00410-2&domain=pdf
http://www.nature.com/natmachintell

ArticlesNATure MAcHiNe iNTelligeNce

•	 Modof-pipem improves the performance of Modof-pipe by at
least 17.8%.

•	 Modof-pipem and Modof-pipe also show superior performance
on two other benchmarking tasks, optimizing molecule binding
affinities against the dopamine D2 receptor and improving the
drug-likeness estimated by quantitative measures.

Related work
A variety of deep generative models have been developed to generate
molecules with desired properties. These generative models include
reinforcement learning (RL)-based models, generative adversarial
networks (GAN)-based models, flow-based generative models and
variational autoencoder (VAE)-based models, among others. Among
RL-based models, You et al.9 developed a graph convolutional policy
network (GCPN) to sequentially add new atoms and corresponding
bonds to construct new molecules. In the flow-based models, Shi
et al.12 developed an autoregressive model (GraphAF), in which they
learned an invertible mapping between Gaussian distribution and
molecule structures, and applied RL to fine-tune the generation pro-
cess. Zang and Wang13 developed a flow-based method (MoFlow) in
which they utilized bond flow to learn an invertible mapping between
bond adjacency tensors and Gaussian distribution, and then applied
a graph conditional flow to generate an atom-type matrix given
the bond adjacency tensors. VAE-based generative models are also
very popular in molecular graph generation. Jin et al.8 first decom-
posed a molecular graph into a junction tree of chemical substruc-
tures, and then used a junction tree VAE (JT-VAE) to generate and
assemble new molecules. Jin et al.14 developed a junction tree-based
encoder–decoder neural model (JTNN), which learns a translation
mapping between a pair of molecules to optimize one into another.
Jin et al.15 replaced the small chemical substructures used in JT-VAE
with larger graph motifs, and modified JTNN into an autoregressive
hierarchical encoder–decoder model (HierG2G). Additional related
work including fragment-based VAE16, Teacher and Student polish
(T&S polish)17, scaffold-based VAE18 and other genetic algorithm-
based methods19,20 are discussed in Supplementary Section 1.

The existing generative methods typically encode the entire
molecular graphs and generate whole, new molecules from an empty
or a randomly selected structure. Unlike these methods, Modof
learns from and encodes the difference between molecules before
and after optimization. The learning and generative processes are
thus less complex and are able to retain major molecular scaffolds.

Problem definition
Following Jin et al.8, we focused on the optimization of the partition
coefficients (logP) measured by Crippen logP (ref. 21) and penal-
ized by SA22 and ring size. Crippen logP is a predicted value of the

experimental logP using the Wildman and Crippen approach21, and
has been demonstrated to have a strong correlation (for example,
r2 = 0.918; ref. 21) with the experimental logP. Because it is impracti-
cal to measure the experimental logP values for a large set of mol-
ecules, such as our training set (Supplementary Section 3), or for
in silico generated molecules, using Crippen logP will enable scal-
able learning from a large set of molecules, and effective yet accu-
rate evaluation on in silico-optimized molecules. The combined
measurement of logP, SA and ring size is referred to as penalized
logP, denoted plogP. Higher plogP values indicate higher molecule
concentrations in the lipid phase with potentially good SA and
simple ring structures. Note that Modof can be used to optimize
other properties as well, with the property of interest used instead
of plogP. The optimization of other properties is discussed in
Supplementary Section 11. Optimizing multiple properties simulta-
neously is discussed in Supplementary Section 12. In the rest of this
Article, ‘property’ is by default referred to plogP.

Problem definition: Given a molecule Mx, molecule optimiza-
tion aims to modify Mx into another molecule My such that (1) My is
similar to Mx in its molecular structures (similarity constraint), that
is, sim(Mx, My) ≥ δ (δ is a threshold), and (2) My is better than Mx
in the property of interest (for example, plogP(My) > plogP(Mx))
(property constraint).

Materials
Data. We used the benchmark training dataset provided by Jin and
colleagues15. This dataset was extracted from the ZINC dataset23,24
and contains 74,887 pairs of molecules. Every two paired molecules
are similar in their molecule structures but different in their plogP
values. Using the DF-GED25 algorithm, we extracted 55,686 pairs of
molecules from Jin’s training dataset such that each extracted pair
had only one disconnection site. That is, our training data amount
to 26% less than in Jin’s dataset. We used these extracted pairs of
molecules (104,708 unique molecules) as our training data. Details
about training data generation are discussed in the next section. We
used Jin’s validation set for parameter tuning, and tested on Jin’s test
dataset of 800 molecules. More details about the training data are
provided in Supplementary Section 3.

Training data generation. We used a pair of molecules (Mx, My) as a
training instance in Modof, where Mx and My satisfy both the simi-
larity and property constraints, and My is different from Mx in only
one fragment at one disconnection site. We constructed such train-
ing instances as follows. We first quantified the difference between
Mx and My using the optimal graph edit distance26 between their
junction tree representations Tx and Ty, and derived the optimal edit
paths to transform Tx to Ty. Such quantification also identified dis-
connection sites at Mx during its graph comparison. Details about

Table 1 | Overall comparison on optimizing plogP

Model δ = 0.0 δ = 0.2 δ = 0.4 δ = 0.6

imprv ± s.d. Sim ± s.d. imprv ± s.d. Sim ± s.d. imprv ± s.d. Sim ± s.d. imprv ± s.d. Sim ± s.d.

JT-VAE 1.91 ± 2.04 0.28 ± 0.15 1.68 ± 1.85 0.33 ± 0.13 0.84 ± 1.45 0.51 ± 0.10 0.21 ± 0.71 0.69 ± 0.06

GCPN 4.20 ± 1.28 0.32 ± 0.12 4.12 ± 1.19 0.34 ± 0.11 2.49 ± 1.30 0.47 ± 0.08 0.79 ± 0.63 0.68 ± 0.08

JTNN – – – – 3.55 ± 1.54 0.46 ± 0.06 2.33 ± 1.19 0.66 ± 0.05

HierG2G – – – – 3.98 ± 1.46 0.46 ± 0.06 2.49 ± 1.09 0.66 ± 0.05

GraphAF 2.94 ± 1.55 0.31 ± 0.15 2.65 ± 1.29 0.35 ± 0.12 1.62 ± 1.16 0.51 ± 0.10 0.34 ± 0.46 0.69 ± 0.06

MoFlow 2.39 ± 1.47 0.54 ± 0.22 2.26 ± 1.37 0.59 ± 0.17 2.04 ± 1.24 0.65 ± 0.12 1.46 ± 1.09 0.71 ± 0.07

Modof-pipe 7.61 ± 2.30 0.21 ± 0.15 6.23 ± 1.77 0.34 ± 0.12 5.00 ± 1.53 0.48 ± 0.09 2.72 ± 1.53 0.65 ± 0.05

Modof-pipem 9.37 ± 2.04 0.12 ± 0.08 7.58 ± 1.65 0.27 ± 0.07 5.89 ± 1.57 0.46 ± 0.06 3.14 ± 1.77 0.65 ± 0.05

Imprv, the average improvement in plogP; s.d., standard deviation; sim, similarity between the original molecules Mx and optimized molecules My; –, not reported in the literature. We calculated ‘sim ± s.d.’
for JTNN and HierG2G using the optimized molecules provided by JTNN and our reproduced results for HierG2G, respectively.

NAtuRe MAChiNe iNtelligeNCe | VOL 3 | DECEMBEr 2021 | 1040–1049 | www.nature.com/natmachintell 1041

http://www.nature.com/natmachintell

Articles NATure MAcHiNe iNTelligeNce

this process is available in Supplementary Section 4. Identified mol-
ecule pairs satisfying similarity and property constraints with only
one site of disconnection were used as training instances. For a pair
of molecules with a high similarity (for example, above 0.6), it is
very likely that they have only one disconnection site, as demon-
strated in Supplementary Section 5.

Molecule similarity calculation. We used 2,048D binary Morgan
fingerprints with radius of 2 to represent molecules and used the
Tanimoto coefficient to measure molecule similarities.

Baseline methods. We compared Modof with state-of-the-art
baseline methods for molecule optimization, including JT-VAE8,
GCPN9, JTNN14, HierG2G15, GraphAF12 and MoFlow13:

•	 JT-VAE encodes and decodes junction trees and assembles new,
entire molecular graphs based on decoded junction trees.

•	 GCPN applies a graph convolutional policy network and itera-
tively generates molecules by adding atoms and bonds, one by
one.

•	 JTNN learns from molecule pairs and performs molecule opti-
mization to translate molecular graphs.

•	 HierG2G encodes molecular graphs in a hierarchical fashion,
and generates new molecules by generating and connecting
structural motifs.

•	 GraphAF learns an invertible mapping between a prior distribu-
tion and molecular structures, and uses reinforcement learning
to fine-tune the model for molecule optimization.

•	 MoFlow learns an invertible mapping between bond adjacency
tensors and Gaussian distribution, and then applies a graph con-
ditional flow to generate an atom-type matrix as the representa-
tion of a new molecule from the mapping.

experimental results
Overall comparison on plogP optimization. Table 1 presents an
overall comparison of Modof-pipe and Modof-pipem, both with a
maximum of five iterations, and the baseline methods on plogP
optimization. Note that Modof-pipem outputs 20 optimized mol-
ecules, as do JTNN and HierG2G. Following GCPN, an addi-
tional constraint of molecule size is imposed into Modof-pipe
to limit the size of the optimized molecules to be at most 38.

As Crippen logP tends to be large on large molecules, this addi-
tional constraint also prevents Modof-pipe from improving
logP by simply increasing the molecule size. When there is no
similarity constraint (δ = 0), that is, it is not required to produce
similar molecules out of the optimization, Modof-pipe is able
to generate highly optimized molecules with substantially bet-
ter plogP improvement (7.61 ± 2.30), with 81.2% improvement
from the best baseline GCPN (4.20 ± 1.28), although with lower
similarities between the molecules before and after the optimi-
zation. Modof-pipem achieves even better performance, with
a plogP improvement of 9.37 ± 2.04, that is, 123.1% better than
GCPN. When the similarity constraint takes effect (for example,
δ = 0.2, 0.4 and 0.6), Modof-pipe consistently produces molecules
that are similar to those before optimization and also with better
properties. At δ = 0.2, 0.4 and 0.6, Modof-pipe achieves better
property improvement (6.23 ± 1.77, 5.00 ± 1.53 and 2.72 ± 1.68,
respectively) than all the best baselines (GCPN with 4.12 ± 1.19 at
δ = 0.2 and HierG2G with 3.98 ± 1.47 at δ = 0.4 and 2.49 ± 1.09 at
δ = 0.6), with 51.2%, 25.6% and 9.2% improvement over the base-
lines, respectively, although the baselines generate more similar
molecules than Modof-pipe. Modof-pipem achieves the best per-
formance on property improvement (7.58 ± 1.65, 5.89 ± 1.57 and
3.14 ± 1.77, respectively) with 84.0%, 48.0% and 26.1% improve-
ment over the best baselines, respectively.

When δ is large, we could observe that JTNN and HierG2G tend
to decode more aromatic rings, leading to large molecules with
over-estimated similarities. However, Modof tends to stop if there
are many aromatic rings and thus produces more drug-like mole-
cules27,28. Issues related to similarity calculation that will affect opti-
mization performance are discussed in Supplementary Section 7.
Still, the overall comparison demonstrates that Modof-pipe and
Modof-pipem outperform or at least achieve similar performance to
state-of-the-art methods.

It is worth noting that our performance is reported on the exact
benchmark test set. In our study, we observed some issues of unfair
comparison in the existing baseline methods. For example, some
baseline methods compared and reported results on a test set other
than the benchmark test set. Some reinforcement learning methods
used the test molecules to either directly train a model or fine-tune a
pre-trained model to optimize the test molecules, which could lead
to artificially high performance29,30. Detailed discussions on com-
parison fairness are provided in Supplementary Section 8.

C

C C

NC

C

GMPN TMPN DSP RFP IMR

Molecule difference encoder (Modof-encoder)
a b

NFA
C

C

C

C

C

= +

++=

Molecule difference decoder (Modof-decoder)

C

NFA-cp

NFA-ntp

NFA-cp

NFA-ntp
NFA-app

DE

NFA-app

C

C C

C

C

C

C

C

C

C

C C

C C

C C

C

C

C

C

C

C C

C C

C

C

C

C

C

C

C

C

C

C

CC

C

C

C

C C

CC

C

C

C

C

C

C

N

C

C

NC

C

C

C

C C

CC

C

C

C

C

C

Cx
x

h–
xy

z–
xy

z– z–z+ nd
nu

 = (2)

=
(2)

(0)

(0)

zxy

z+
xy

h+
xy

aj

aj
(1)

y

y

x y

y
(1)y

Fig. 1 | Modof model overview. a, The Modof-encoder. Modof first generates atom embeddings of Mx/My over molecular graphs Gx/Gy using GMPNs,
as well as node embeddings over corresponding junction trees Tx/Ty using TMPNs. The difference between Tx and Ty at the disconnection site (circles
in Tx/Ty) is encoded (DE) into h−xy and h+xy, which then construct two normal distributions z−xy and z+xy. b, The Modof-decoder. Using zxy, Modof conducts
disconnection site prediction (DSP) to identify site nd. At neighbours of nd, Modof conducts removal fragment prediction (rFP) to remove the fragment
at nd. Then, Modof produces an intermediate representation (IMr) of the remaining scaffold (G∗, T ∗). Over (G∗, T ∗), Modof performs new fragment
attachment (NFA) by interactively performing child node connection prediction (NFA-cp), child node type prediction (NFA-ntp) and attachment point
prediction (NFA-app) to optimize Mx. In molecule representations, substructures in molecular graphs and their corresponding nodes in junction trees are
coded in the same colours.

NAtuRe MAChiNe iNtelligeNCe | VOL 3 | DECEMBEr 2021 | 1040–1049 | www.nature.com/natmachintell1042

http://www.nature.com/natmachintell

ArticlesNATure MAcHiNe iNTelligeNce

Additional experimental results are provided in Supplementary
Section 9, such as overall Modof-pipe performance, transforma-
tion over chemical spaces and retaining of molecule scaffolds.
Specifically, we compared model complexities (Supplementary
Section 9.7), showing that Modof uses at least 40% fewer param-
eters and 26% less training data but outperforms or achieves
results that are comparable to these state-of-the-art baselines.
For reproducibility purposes, detailed parameters are reported in
Supplementary Section 9.8.

Case study. Among training molecules, the top-five most popu-
lar fragments that have been removed from Mx are presented in
Fig. 2a with their canonical SMILE strings. The top-five most
popular fragments to be attached to generate My are presented in
Fig. 2b. Overall, the removal fragments in training data comprise,
on average, 2.85 atoms and the new attached fragments comprise
7.55 atoms; that is, the optimization is typically done by removing
small fragments and then attaching larger fragments.

Figure 2c presents an example of molecule Mx (that is, M(0)
x)

being optimized via four iterations in Modof-pipe into another mol-
ecule M(4)

x under δ = 0.4. At each iteration, only one small fragment
(highlighted in red in the figure) is modified from its input, and the
plogP value (below each molecule) is improved. In the first itera-
tion, M(1)

x is modified from M(0)
x by removal of the hydroxyl group

in M(0)
x and addition of the 2-chlorophenyl group. The hydroxyl

group is polar and tends to increase the water solubility of the mol-
ecules, while the 2-chlorophenyl group is non-polar and thus more
hydrophobic. In addition, the increase in molecular weight brought
by the chlorophenyl substituent would contribute to the lower water
solubility as well. Thus, the modification from the hydroxyl group
to the chlorophenyl group induces the logP increase (from 0.5226 to
3.9465). Meanwhile, the introduction of the 2-chlorophenyl group
to the cyclobutyl group adds complexity to the synthesis, in addition
to possible steric effects due to the ortho-substitution on the aro-
matic ring, and induces a decrease in SA (from −4.8669 to −4.9955).
In the second iteration, the methyl group in M(1)

x is replaced by a tri-
fluoromethyl group. The trifluoromethyl group is more hydropho-
bic than the methyl group and thus increases the logP value of M(2)

x
over M(1)

x (from 3.9465 to 4.6569). Meanwhile, the slightly larger
molecule M(2)

x has slightly worse SA (from −4.9955 to −5.1168). If
logP is preferred to be lower than 5 as proposed in the Lipinski’s rule
of five31, Modof-pipe can be stopped at this iteration. Otherwise, in
the following two iterations, more halogens are added to the aro-
matic ring, which could make the aromatic ring less polar and fur-
ther decrease water solubility and increase the logP values32. These
four iterations highlight the interpretability of Modof-pipe corre-
sponding to chemical knowledge. Please note that all the modifi-
cations in Modof are learned in an end-to-end fashion from data,
without any chemical rules or templates imposed a priori, empha-
sizing the power of Modof in learning from molecules.

In Fig. 2c, the molecule similarities between M(t)
x (t = 1, ..., 4)

and M(0)
x are 0.630, 0.506, 0.421 and 0.411, respectively. This exam-

ple also shows that Modof is able to retain the major scaffold of a
molecule and optimizes at different disconnection sites during the
iterative optimization process. Additional analysis on fragments is
provided in Supplementary Section 10.

Performance on DRD2 and QED optimization. In addition to
improving plogP, another two popular benchmarking tasks for
molecule optimization include improving molecule binding affini-
ties against the dopamine D2 receptor (DRD2) and improving
the drug-likeness estimated by quantitative measures (QED)33.
Specifically, given a molecule that does not bind well to the DRD2
receptor (for example, with low binding affinities), the objective
of optimizing the DRD2 property is to modify the molecule into
another one that will better bind to DRD2. In the QED task, given Ta

bl
e

2
| O

ve
ra

ll
co

m
pa

ris
on

 o
n

op
tim

iz
in

g
D

RD
2

an
d

Q
eD

M
od

el
O

pt
im

iz
in

g
D

RD
2

O
pt

im
iz

in
g

Q
eD

O
M

-p
ic

 (D
RD

2(
M

y)
 ≥

 0
.5

)
O

M
-t

rn
 (i

m
pr

v ≥
 0

.2
)

O
M

-p
ic

 (Q
eD

(M
y)

 ≥
 0

.9
)

O
M

-t
rn

 (i
m

pr
v ≥

 0
.1)

Ra
te

 (%
)

im
pr

v ±
 s.

d.
Si

m
 ±

 s.
d.

Ra
te

 (%
)

im
pr

v ±
 s.

d.
Si

m
 ±

 s.
d.

Ra
te

 (%
)

im
pr

v ±
 s.

d.
Si

m
 ±

 s.
d.

Ra
te

 (%
)

im
pr

v ±
 s.

d.
Si

m
 ±

 s.
d.

JT
N

N
78

.10
0.

83
 ±

 0
.17

0.
44

 ±
 0

.0
5

78
.3

0
0.

83
 ±

 0
.17

0.
44

 ±
 0

.0
5

60
.5

0
0.

17
 ±

 0
.0

3
0.

47
 ±

 0
.0

6
67

.3
8

0.
17

 ±
 0

.0
3

0.
47

 ±
 0

.0
7

H
ie

rG
2G

82
.0

0
0.

83
 ±

 0
.16

0.
44

 ±
 0

.0
5

84
.0

0
0.

82
 ±

 0
.18

0.
44

 ±
 0

.0
5

75
.12

0.
18

 ±
 0

.0
3

0.
46

 ±
 0

.0
6

82
.3

8
0.

17
 ±

 0
.0

3
0.

46
 ±

 0
.0

6

JT
N

N
(m

)
43

.5
0

0.
77

 ±
 0

.15
0.

49
 ±

 0
.0

8
61

.6
0

0.
65

 ±
 0

.2
4

0.
49

 ±
 0

.0
8

40
.5

0
0.

17
 ±

 0
.0

3
0.

54
 ±

 0
.0

9
68

.5
0

0.
15

 ±
 0

.0
3

0.
54

 ±
 0

.0
9

H
ie

rG
2G

(m
)

51
.8

0
0.

78
 ±

 0
.15

0.
49

 ±
 0

.0
8

70
.2

0
0.

66
 ±

 0
.2

4
0.

49
 ±

 0
.0

8
37

.12
0.

17
 ±

 0
.0

3
0.

52
 ±

 0
.0

9
65

.8
8

0.
15

 ±
 0

.0
3

0.
53

 ±
 0

.10

M
od

of
-p

ip
e

74
.9

0
0.

83
 ±

 0
.14

0.
48

 ±
 0

.0
7

89
.0

0
0.

75
 ±

 0
.2

2
0.

48
 ±

 0
.0

7
40

.0
0

0.
17

 ±
 0

.0
3

0.
51

 ±
 0

.0
8

70
.0

0
0.

16
 ±

 0
.0

3
0.

51
 ±

 0
.0

8

M
od

of
-p

ip
em

88
.6

0
0.

88
 ±

 0
.12

0.
46

 ±
 0

.0
5

95
.9

0
0.

84
 ±

 0
.18

0.
46

 ±
 0

.0
5

66
.2

5
0.

18
 ±

 0
.0

3
0.

48
 ±

 0
.0

7
87

.6
2

0.
17

 ±
 0

.0
3

0.
48

 ±
 0

.0
7

O
M

-p
ic

: t
he

 o
pt

im
iz

ed
 m

ol
ec

ul
es

 th
at

 a
ch

ie
ve

 a
 c

er
ta

in
 p

ro
pe

rt
y

im
pr

ov
em

en
t:

(1
) f

or
 D

rD
2,

 th
e

op
tim

iz
ed

 m
ol

ec
ul

es
 M

y s
ho

ul
d

ha
ve

 D
rD

2
sc

or
e

no
 le

ss
 th

an
 0

.5
; (

2)
 fo

r Q
ED

, t
he

 o
pt

im
iz

ed
 m

ol
ec

ul
es

 M
y s

ho
ul

d
ha

ve
 Q

ED
 s

co
re

 n
o

le
ss

 th
an

 0
.9

. O
M

-t
rn

: t
he

 o
pt

im
iz

ed

m
ol

ec
ul

es
 th

at
 a

ch
ie

ve
 a

 p
ro

pe
rt

y
im

pr
ov

em
en

t i
n

a
si

m
ila

r d
eg

re
e

as
 in

 tr
ai

ni
ng

 d
at

a:
 (1

) f
or

 D
rD

2,
 th

e
op

tim
iz

ed
 m

ol
ec

ul
es

 M
y s

ho
ul

d
sa

tis
fy

 D
rD

2(
M

y)
 −

 D
rD

2(
M

x)
 ≥

 0
.2

; (
2)

 fo
r Q

ED
, t

he
 o

pt
im

iz
ed

 m
ol

ec
ul

es
 M

y s
ho

ul
d

sa
tis

fy
 Q

ED
 s

co
re

s
Q

ED
(M

y)
 −

 Q
ED

(M
x)

 ≥
 0

.1.
 r

at
e

(%
) i

nd
ic

at
es

 th
e

pe
rc

en
ta

ge
 o

f o
pt

im
iz

ed
 m

ol
ec

ul
es

 in
 e

ac
h

gr
ou

p
(O

M
, O

M
-p

ic
, O

M
-t

rn
) o

ve
r a

ll
te

st
 m

ol
ec

ul
es

; i
m

pr
v,

 a
ve

ra
ge

 p
ro

pe
rt

y
im

pr
ov

em
en

t;
s.

d.
, s

ta
nd

ar
d

de
vi

at
io

n;
 s

im
, s

im
ila

rit
y

be
tw

ee
n

th
e

or
ig

in
al

 m
ol

ec
ul

es
 M

x a
nd

 o
pt

im
iz

ed
 m

ol
ec

ul
es

 M
y.

Be
st

 ra
te

 v
al

ue
s

ar
e

sh
ow

n
in

 b
ol

d.

NAtuRe MAChiNe iNtelligeNCe | VOL 3 | DECEMBEr 2021 | 1040–1049 | www.nature.com/natmachintell 1043

http://www.nature.com/natmachintell

Articles NATure MAcHiNe iNTelligeNce

a molecule that is not very drug-like, the objective of optimizing
the QED property is to modify this molecule into a more ‘drug-like’
molecule. Table 2 presents the major results in success rates, prop-
erty improvement and similarity comparison under the similarity
constraint δ = 0.4. The results demonstrate that Modof-pipem sub-
stantially outperforms or is comparable to the baseline methods in
optimizing DRD2 and QED, when the success rates are measured
either using the benchmark metrics14,15 (OM-pic in Table 2) or
based on training data (OM-trn in Table 2). Figure 3a,b presents two
examples of molecule optimization for DRD2 and QED property
improvement. In Fig. 3b, in the first iteration, a 4-methoxyphenyl
group is removed and a small chain of 2-fluoroethyl group is added,
so the number of aromatic rings and the number of hydrogen-bond
acceptors are reduced, which makes the compound more drug-like
than its predecessor. In the second iteration, a cyclooctyl group
is removed from M(1)

x and a 2-fluorophenyl group is added. This
modification may induce reduced flexibility—another preferred
property of a successful drug. In the following iterations, some com-
monly used fragments in drug design are used to further modify the
molecule into more drug-likeness. Note that, again, QED optimiza-
tion is completely learned from data in an end-to-end fashion with-
out any medicinal chemistry knowledge imposed by experts. The
meaningful optimization in the example in Fig. 3b demonstrates the
interpretability of Modof-pipe. More details about these two optimi-
zation tasks and results are provided in Supplementary Section 11.

We also conducted experiments to optimize both DRD2
and QED properties of molecules simultaneously, that is, a
multi-property optimization task. Details on this multi-property
task and results are provided in Supplementary Section 12. Figure 3c
presents an example of multi-property molecule optimization, in

which both the DRD2 and QED scores of the molecule are consis-
tently increased with the iterations of optimization.

Discussion and conclusions
Molecule optimization using simulated properties. Most of the
molecule properties considered in our experiments are based on
simulated or predicted values rather than experimentally measured.
That is, an independent simulation or machine learning model is first
used to generate the property values for the benchmark dataset. For
example, Crippen logP is estimated via the Wildman and Crippen
approach21, synthesis accessibility is calculated using a scoring func-
tion over predefined fragments22, the DRD2 property is predicted
using a support vector machine classifier34, and the QED property
is predicted using a nonlinear classifier combining multiple desir-
ability functions of molecular properties33. Although all the existing
generative models for molecule optimization8,9,13–16,19,35–37 use such
simulated properties, there are both challenges and opportunities.
Challenges arise when the simulation or machine learning mod-
els for those property predictions are not sufficiently accurate for
various reasons (for example, limited or biased training molecules)
and the generative models learned from the inaccurate property
values would also be inaccurate or incorrect, resulting in gener-
ated molecules that could negatively impact the downstream drug
development tasks. However, the opportunities due to the property
simulation or prediction can be immense in fully unleashing the
power of large-scale, data-driven learning paradigms to stimulate
drug development as we continue to improve these simulations and
predictions. Specifically, most deep learning-based models for drug
development purposes, many of which have been demonstrated to
be very promising38, are not possible without large-scale training

a

O[C:1] N#[C:1] [O–][C:1]

–

[NH3
+][C:1] N[C:1]=O

b

CCSc1cccc[c:1]1 Clc1ccc([C:1])cc1 Clc1c[c:1]ccc1 Clc1cccc[c:1]1 c1ccc2sc([C:1])nc2c1

c

Mx
(0)

Mx
(0)

Mx
(1)

Mx
(1)

Mx
(2)

Mx
(2)

Mx
(3)

Mx
(3)

Mx
(4)−3.3556

logP: 0.5226
SA: −4.8669
Ring size: 0.0000

−1.1227
logP: 3.9465
SA: −4.9955
Ring size: 0.0000

−0.7730
logP: 4.6569
SA: −5.1168
Ring size: 0.0000

–0.4556
logP: 5.3103
SA: –5.2319
Ring size: 0.0000

–0.1201
logP: 6.1819
SA: –5.4588
Ring size: 0.0000

d

−1.2908
logP: 1.3159
SA: −3.6069
Ring size: 0.0000

2.0560
logP: 3.8622
SA: −2.2970
Ring size: 0.0000

1.4486
logP: 2.6945
SA: −2.1247
Ring size: 0.0000

2.8787
logP: 4.8758
SA: −2.2002
Ring size: 0.0000

Fig. 2 | Modof-pipe examples for plogP optimization. a, Visualization of popular removal fragments. b, Visualization of popular attaching fragments.
c, Modof-pipe optimization example with multiple disconnection sites and multiple Modof iterations. d, Local optimization. Disconnection sites are
highlighted in yellow. Modified fragments in each step are highlighted in red. retained scaffolds after Modof-pipe optimization are highlighted in sky blue.
Numbers associated with Mx are the corresponding plogP values.

NAtuRe MAChiNe iNtelligeNCe | VOL 3 | DECEMBEr 2021 | 1040–1049 | www.nature.com/natmachintell1044

http://www.nature.com/natmachintell

ArticlesNATure MAcHiNe iNTelligeNce

data. Although it is impractical, if even possible, to experimentally
measure the properties of interest for a large set of molecules (for
example, more than 100,000 molecules as in our benchmark train-
ing data), the property simulation or prediction of the molecules
enables large training data and makes the development of such deep
learning methodologies possible. Fortunately, property prediction
simulations or models have become more accurate (for example,
98% accuracy for DRD234) due to the accumulation of experimental
measurements39 and the strong learning power of innovative compu-
tational approaches. The accurate property simulation or prediction
over large-scale molecule data and the powerful learning capabil-
ity of generative models from such molecule data will together have
strong potential to further advance in silico drug development.

Synthesizability and retrosynthesis. Our experiments show that
Modof is also able to improve synthesis accessibility (Supplementary
Section 9.4). However, it does not necessarily mean that the gener-
ated molecules can be easily synthesized. This limitation of Modof
is actually common to almost all the computational approaches for
molecule generation. A recent study has shown that many mol-
ecules generated via deep learning are not easily synthesizable40,
which limits the translational potentials of the generative models
in making real impacts in drug development. On the other hand,
retrosynthesis prediction via deep learning, which aims to iden-
tify a feasible synthesis path for a given molecule through learning
and searching from a large collection of synthesis paths, has been
an active research area41,42. Optimizing molecules towards not only
better properties but also better synthesizability, particularly with
explicit synthesis paths identified simultaneously, could be a highly
interesting and challenging future research direction. Ultimately, we
would like to develop a comprehensive computational framework
that could generate synthesizable molecules with preferable proper-
ties. This would require not only a substantial amount of data to
train sophisticated models, but also necessary domain knowledge
and human experts looped into the learning process.

In vitro validation. Ultimately, testing of the in silico-generated
molecules in a laboratory will be needed to validate the computa-
tional methods. Although most existing computational methods

are developed in academic environments and thus cannot be easily
tested on purchasable or proprietary molecule libraries, and their
generated molecules cannot be easily synthesized as we discussed
earlier, a few successful stories43 have demonstrated that powerful
computational methods have great potential to truly make new dis-
coveries that can succeed in laboratory validation. Analogous to this
molecule optimization and discovery process using deep learning
approaches is AlphaFold44, a deep learning method that predicts
protein folding structures. The breakthrough from AlphaFold in
solving a 50-year-old grand challenge in biology offers strong evi-
dence of the tremendous power of modern learning approaches,
which should not be underestimated. Still, collaborations with the
pharmaceutical industry and in vitro testing are very much needed
to truly translate the progress with computational methods into a
real impact. In addition, effective sampling and/or prioritization of
generated molecules to identify a feasible, small set of molecules for
small-scale in vitro validation could be a practical solution. This will
require the development of new sampling schemes over molecule
subspaces and/or the learning of molecule prioritization45,46 within
the molecule generation process. Meanwhile, large-scale in vitro
validation of in silico-generated molecules is a challenging but
interesting future research direction.

Other issues in computational molecule optimization. A limita-
tion of Modof-pipe is that it employs a local greedy optimization
strategy: in each iteration, the input molecules to Modof will be
optimized to the best, and if the optimized molecules do not have
better properties, they will not go through additional Modof itera-
tions. Detailed discussions about local greedy optimization are pro-
vided in Supplementary Section 13.1. In addition to the partition
coefficient, there are a lot of factors (for example, toxicity and syn-
thesizability) that need to be considered to develop a molecule into
a drug. Discussions about multi-property optimization are available
in Supplementary Section 13.2. Target-specific molecule optimiza-
tion is also discussed in Supplementary Section 13.3. The Modof
framework could also be used for compounds or substance prop-
erty optimization in other application areas (for example, melting
or boiling points for volatiles). Related discussions are presented in
Supplementary Section 13.4.

a

Mx
(0)

Mx
(0)

Mx
(0)

Mx
(1)

Mx
(1)

Mx
(1)

Mx
(2)

Mx
(2)

Mx
(2)

Mx
(3)

Mx
(3)

Mx
(3)

Mx
(4)

Mx
(4)

Mx
(4)

Mx
(5)

Mx
(5)

0.0036 0.0543 0.2746 0.5000 0.6179 0.7330

b

0.7295 0.8458 0.8881 0.9134 0.9196 0.9260

c

0.5312
DRD2: 0.1039
QED: 0.4273

0.9788
DRD2: 0.4939
QED: 0.4849

1.4358
DRD2: 0.9076
QED: 0.5282

1.6302
DRD2: 0.9413
QED: 0.6889

1.7014
DRD2: 0.9528
QED: 0.7486

Fig. 3 | Modof-pipe examples for DRD2, QeD and multi-property optimization. a, Modof-pipe examples for DrD2 optimization. b, Modof-pipe examples
for QED optimization. c, Modof-pipe examples for multi-property optimization of DrD2 and QED. Modified fragments in each step are highlighted in red.
Numbers associated with Mx are the corresponding property values.

NAtuRe MAChiNe iNtelligeNCe | VOL 3 | DECEMBEr 2021 | 1040–1049 | www.nature.com/natmachintell 1045

http://www.nature.com/natmachintell

Articles NATure MAcHiNe iNTelligeNce

Conclusions. Modof optimizes molecules at one disconnection site
at a time by learning the difference between molecules before and
after optimization. With a much less complex model, it achieves
substantially better or similar performance to state-of-the-art
methods. In addition to the limitations and corresponding future
research directions that have been discussed above, another limita-
tion with Modof is that, in Modof, the modification happens at the
periphery of molecules. Although this is very common in in vitro
lead optimization, we are currently investigating how Modof can be
enhanced to modify the internal regions of molecules, if needed, by
learning from proper training data with such regions. Additionally,
we hope to integrate domain-specific knowledge in the Modof
learning process to facilitate increased explainability in the learning
and generative process.

Methods
Modof modifies one fragment (for example, a ring system, a linker, a side chain) of
a molecule at a time, and thus only encodes and decodes the fragment that needs
modification. The site of M where the fragment is modified is referred to as the site
of disconnection and denoted nd, which corresponds to a node in the junction tree
representation (discussed in the section Molecule representations and notations).
Figure 1 presents an overview of Modof. All the algorithms are presented in
Supplementary Section 14. Discussions on the single-disconnection-site rationale
are presented in Supplementary Section 5.

Molecule representations and notations. We represent a molecule Mx using a
molecular graph Gx and a junction tree Tx. Gx is denoted Gx = (Ax,Bx), where
Ax is the set of atoms in Mx, and Bx is the set of corresponding bonds. In the
junction tree representation, Tx = (Vx, Ex) (ref. 8), all the rings and bonds in
Mx are extracted as nodes in Vx, and nodes with common atoms are connected
with edges in Ex. Thus, each node n ∈ Vx is a substructure (for example, a ring,
a bond and its connected atoms) in Gx. We denote the atoms included in node n
as Ax(n) and refer to the nodes connected to n in Tx as its neighbours, denoted
Nx(n). Thus, each edge (nu, nv) ∈ Ex actually corresponds to the common atoms
Ax(nu) ∩ Ax(nv) between nu and nv. When no ambiguity arises, we will eliminate
subscript x in the notations. Note that atoms and bonds are the terms used for
molecular graph representations, and nodes and edges are used for junction tree
representations. In this Article, all the embedding vectors are by default column
vectors, represented by lower-case bold letters; all the matrices are represented by
upper-case letters. Key notations are listed in Table 3.

Molecular difference encoder (Modof-encoder). Given two molecules (Mx,
My), Modof (algorithm 1 in Supplementary Section 14) learns and encodes the
difference between Mx and My using message passing networks47 over graphs Gx
and Gy, denoted graph message passing networks (GMPNs), and over junction
trees Tx and Ty, denoted tree message passing networks (TMPNs), in three steps.

Step 1 Atom embedding over graphs (GMPN). Modof first represents atoms using
embeddings to capture atom types and their local neighbourhood structures by
propagating messages along bonds over molecular graphs. Modof uses a one-hot
encoding xi to represent the type of atom ai, and a one-hot encoding xij to represent
the type of bond bij connecting ai and aj. Each bond bij is associated with two
messages mij and mji encoding the messages propagating from atom ai to aj and
vice versa. The m(t)

ij in the tth iteration of the GMPN is updated as follows:

m(t)
ij = ReLU (Wa

1xi + Wa
2xij + Wa

3
∑

ak∈N(ai)\{aj}
m(t−1)

ki),

where m(0)
ki is initialized as zero, and Wa

i (i = 1, 2, 3) are the learnable parameter
matrices. Thus, the message m(t)

ij encodes the information of all length-t paths
passing through bij to aj in the graph. After ta iterations of message passing, the
atom embedding aj is updated as follows:

aj = ReLU (Ua
1xj + Ua

2
∑

ai∈N(aj)
m(1···ta)

ij),

where m(1···ta)
ij is the concatenation of message vectors from all iterations, and Ua

1
and Ua

2 are learnable parameter matrices. Thus, the atom embedding aj aggregates
information from aj’s ta-hop neighbours, as in Xu et al.48, to improve the atom
embedding representation power.

Step 2 Node embedding over junction trees (TMPN). Modof encodes nodes in
junction trees into embeddings to capture their local neighbourhood structures
by passing messages along the tree edges. To produce rich representations of
nodes, Modof first aggregates the information of atoms within a node nu into
an embedding su, and the information of atoms shared by a tree edge euv into an
embedding suv through the following pooling:

su =
∑

ai∈A(nu)
ai , (1)

suv =
∑

ai∈A(nu)∩A(nv)
ai . (2)

Modof also uses a learnable embedding xu to represent the type of node nu. Thus,
m(t)

uv from node nu to nv in the tth iteration of TMPN is updated as follows:

m(t)
uv = ReLU(Wn

1ReLU (Wn
2 [xu;su]) + Wn

3suv + Wn
4

∑

nw∈N(nu)\{nv}

m(t−1)
wu),

where [xu; su] is a concatenation of xu and su so as to represent comprehensive node
information, and Wn

i (i = 1, 2, 3, 4) are learnable parameter matrices. Similarly to
the messages in GMPNs, m(t)

uv encodes the information of all length-t paths passing
through edge euv to nv in the tree. After tn iterations, the node embedding nv is
updated as follows:

nv = ReLU(Un
1ReLU (Un

2 [xv;sv]) + Un
3
∑

nu∈N(nv)
m(1···tn)

uv), (3)

where Un
i (i = 1, 2, 3) are the learnable parameter matrices.

Step 3 Difference embedding. The difference embedding between Mx and My is
calculated by pooling the node embeddings from Tx and Ty as follows:

h−
xy =

∑
nx∈{Vx\Vy}∪{nd∈Vx}

nx,

h+
xy =

∑
ny∈{Vy\Vx}∪{nd∈Vy}

ny,

where nx/ny are the embeddings of nodes only appearing in and learned from
Tx/Ty via the TMPN. Note that nd in the above equations is the site of
disconnection, and both Tx and Ty have the common node nd. Thus, h−

xy essentially
represents the fragment that should be removed from Mx at nd and h+

xy represents
the fragment that should be attached to Mx at nd afterwards so as to modify Mx
into My. We will discuss how to identify nd, and the removed and new attached
fragments at nd in Mx and My in the section ‘Molecular difference decoder
(Modof-decoder)’.

As in VAE49, we map the two difference embeddings h−
xy and h+

xy into two
normal distributions by computing the mean and log variance with fully connected
layers μ(⋅) and Σ(⋅). We then sample the latent vectors z−xy and z+xy from these two
distributions and concatenate them into one latent vector zxy, that is:

z−xy ∼ N(μ
−
(h−

xy), Σ
−
(h−

xy)),

z+xy ∼ N(μ
+
(h+

xy), Σ
+
(h+

xy)),

zxy = [z−xy ;z
+
xy]. (4)

Thus, zxy encodes the difference between Mx and My.

Molecular difference decoder (Modof-decoder). Following the autoencoder idea,
Modof decodes the difference embedding zxy (equation (4)) into edit operations
that change Mx into My. Specifically, Modof first predicts a node nd in Tx as the
disconnection site. This node will split Tx into several fragments, and the number

Table 3 | Notation

Notation Meaning

M = (G, T) Molecule represented by G and T

G = (A,B) Molecular graph with atoms A and bonds B

T = (V , E) Junction tree with nodes V and edges E

a An atom in G

bij A bond connecting atoms ai and aj in G

n A node in T

euv An edge connecting nodes nu and nv in T

nd Site of disconnection

A(n), N (n) Atoms included in a tree node n, n’s neighbours
x Atom type embedding

m(1⋯t) Concatenation of m(1), m(2), ... m(t)

NAtuRe MAChiNe iNtelligeNCe | VOL 3 | DECEMBEr 2021 | 1040–1049 | www.nature.com/natmachintell1046

http://www.nature.com/natmachintell

ArticlesNATure MAcHiNe iNTelligeNce

of resulting fragments depends on the number of nd’s neighbouring nodes N (nd).
Modof then predicts which frag ments to remove from Mx and merges the
remaining fragments with nd into an intermediate representation M∗ = (G∗, T ∗).
After that, Modof attaches new fragments sequentially, starting from nd to
(G∗, T ∗). The decoding process (algorithm 2 in Supplementary Section 14) has
four steps.

Step 1 Disconnection site prediction. Modof predicts a disconnection score for each
T

′
x s node nu as follows:

fd(nu) = (wd
)

T tanh(Wd
1nu + Wd

2z) , ∀ nu ∈ Vx, (5)

where nu is nu’s embedding (equation (3)) in Tx, and wd and Wd
i (i = 1, 2) are the

learnable parameter vector and matrices, respectively. The node with the largest
disconnection score is predicted as the disconnection site nd. Intuitively, Modof
considers the neighbouring or local structures of nu (in nu) and ‘how likely’ edit
operations (represented by z) can be applied at nu. To learn fd, Modof uses the negative
log-likelihood of the ground-truth disconnection site in tree Tx as the loss function.

Step 2 Removal fragment prediction. Modof predicts which fragments separated by
nd should be removed from Tx. For each node nu connected to nd, Modof predicts
a removal score as follows:

fr(nu) = σ((wr
)

T ReLU (Wr
1nu + Wr

2z
−
)) , ∀eud ∈ Ex, (6)

where σ(⋅) is the sigmoid function, and wr and Wr
i (i = 1, 2) are the learnable

parameter vector and matrices, respectively. The fragment with a removal score
greater than 0.5 is predicted to be removed. Thus, there could be multiple or
no fragments removed. Intuitively, Modof considers the local structures of
the fragment (that is, nu) and ‘how likely’ this fragment should be removed
(represented by z−). To learn fr, Modof minimizes the binary cross-entropy loss to
maximize the predicted scores of ground-truth removed fragments in Tx.

Step 3 Intermediate representation. After fragment removal, Modof merges the
remaining fragments together with the disconnection site nd into an intermediate
representation M∗ = (G∗, T ∗). M∗ may not be a valid molecule after some
fragments are removed (some bonds are broken). It represents the scaffold of
Mx that should remain unchanged during optimization. Modof first removes a
fragment so as to identify such a scaffold and then adds a fragment to the scaffold
to modify the molecule.

Step 4 New fragment attachment. Modof modifies M∗ into the optimized My by
attaching a new fragment (algorithm 3 in Supplementary Section 14). Modof
uses the following four predictors to sequentially attach new nodes to T ∗. The
predictors will be applied iteratively, starting from nd, on each newly attached node
in T ∗. The attached new node in the tth step is denoted n∗(t) (n∗(0) = nd), and
the corresponding molecular graph and tree are denoted G∗(t) (G∗(0) = G

∗) and
T

∗(t) (T ∗(0) = T
∗), respectively.

Step 4.1 Child connection prediction (NFA-cp). Modof first predicts whether n∗(t)
should have a new child node attached to it, with the probability calculated as
follows:

fc(n∗(t)) = σ((wc
)

T ReLU (Wc
1n

∗(t)
+ Wc

2z
+
)), (7)

where n∗(t) is the embedding of node n∗(t) learned over (T ∗(t),G∗(t)) (equation
(3)), z+ (equation (4)) indicates how much T ∗(t) should be expanded, and wc and
Wc

i (i = 1, 2) are the learnable parameter vector and matrices. If fc(n∗(t)) is above
0.5, Modof predicts that n∗(t) should have a new child node and thus child node
type prediction will follow; otherwise, the optimization process stops at n∗(t). To
learn fc, Modof minimizes a binary cross-entropy loss to maximize the probabilities
of ground-truth child nodes. Note that n∗(t) may have multiple children, so, once
a child is generated as in the following steps and attached to T ∗(t), another child
connection prediction will be conducted at n∗(t) with the updated embedding
n∗(t)) over the expanded (T ∗(t),G∗(t)). The above process is iterated until n∗(t) is
predicted to have no more children.

Step 4.2 Child node type prediction (NFA-ntp). The new child node of n∗(t) is
denoted nc. Modof predicts the type of nc by calculating the probabilities of all
types of node that can be attached to n∗(t) as follows:

fl(nc) = softmax(Ul
× ReLU (Wl

1n
∗(t)

+ Wl
2z

+
)), (8)

where softmax(⋅) converts a vector of values into probabilities, and Ul and Wl
i

(i = 1, 2) are learnable matrices. Modof assigns the new child nc the node type
xc corresponding to the highest probability. Modof learns fl by minimizing the
cross-entropy to maximize the likelihood of true child node types.

Step 4.3 Attachment point prediction (NFA-app). If node n∗(t) is predicted to
have a child node nc, the next step is to connect n∗(t) and nc. If n∗(t) and nc share

one or multiple atoms (for example, n∗(t) and nc form a fused ring and thus share
two adjacent atoms) that can be unambiguously determined as the attachment
point(s) based on chemical rules, Modof will connect n∗(t) and nc via the atom(s).
Otherwise, if n∗(t) and nc have multiple connection configurations, Modof predicts
the attachment atoms at n∗(t) and nc, respectively.

Step 4.3.1 Attachment point prediction at the parent node (NFA-app-p). Modof
scores each candidate attachment point at parent node n∗(t), denoted a∗p, using

gp(a∗p) = (wp
)

T tanh(Wp
1a

∗
p + Wp

2xc + Wp
3 × ReLU (Un

2 [x
∗(t) ;̃s∗(t)]) + Wp

4z
+
),
(9)

where a∗p =
∑

ai∈a∗p
ãi represents the embedding of a∗p (a∗p could be an atom or

a bond), ãi is calculated by GMPN over G∗(t), Un
2 is as in equation (3), s̃∗(t) is the

sum of the embeddings of all atoms in n∗(t) (equation (1)), and wp and Wp
i (i = 1,

2, 3, 4) are the learnable vector and matrices. Modof intuitively measures how
likely a∗p can be attached to nc by looking at a∗p its own (that is, a∗p), its context in
n∗(t) (that is, x∗(t) and neighbours s̃∗(t)), its connecting node nc (that is, xc) and
how much n∗(t) should be expanded (represented by z+). The candidate with
the highest score is selected as the attachment point in n∗(t) . Modof learns gp by
minimizing the negative log-likelihood of ground-truth attachment points.

Step 4.3.2 Attachment point prediction at the child node (NFA-app-c). Modof
scores each candidate attachment point at the child node nc, denoted a∗c , using

gc(a∗c) = (wo
)

T tanh(Wo
1a

∗
c + Wo

2xc + Wo
3a

∗
p + Wo

4z
+
), (10)

where a∗c =
∑

ai∈a∗c
ãi represents the embedding of a∗c (a∗c could be an atom or a

bond) and ãi is the embedding of ai calculated over nc via GMPN, and wo and Wo
i

(i = 1, 2, 3, 4) are the learnable parameters. Modof intuitively measures how likely
candidate a∗c can be attached to a∗p at n∗(t) by looking at a∗c its own (that is, a∗c), the
features of a∗p (that is, a∗p), its context in nc (that is, xc) and how much n∗(t) should
be expanded (that is, z+). The candidate with the highest score is selected as the
attachment point in nc. Modof learns gc by minimizing the negative log-likelihood
of ground-truth attachment points.

Valence checking. In NFA-app, Modof incorporates a valence check to only
generate and predict legitimate candidate attachment points that do not violate
valence laws.

Molecule size constraint. Following You et al.9, for plogP optimization, we limit the
size of the optimized molecules to at most 38 (38 is the maximum number of atoms
in the molecules in the ZINC dataset23). With this molecule size constraint, Modof
can avoid increasing plogP by trivially increasing the molecule size, which may
have the effect of improving plogP (ref. 50).

Sampling schemes. In the decoding process, for each Mx, Modof samples 20 times
from the latent space of z and optimizes Mx accordingly. Among all decoded
molecules satisfying the similarity constraint with Mx, Modof selects the one with
the best property as its output.

Modof pipelines. A pipeline of Modof models, denoted Modof-pipe (algorithm
4 in Supplementary Section 14), is constructed with a series of identical Modof
models, with the output molecule from one Modof model as the input to the next.
Given an input molecule M(t) to the tth Modof model (M(0) = M), Modof first
optimizes M(t) into M(t + 1) as the output of this model. M(t + 1) is then fed into the
(t + 1)th model if it satisfies the similarity constraint sim(M(t + 1), M) > δ and the
property constraint plogP(M(t + 1)) > plogP(M(t)). Otherwise, M(t) is output as the
final result and Modof-pipe stops. In addition to Modof-pipe, which outputs one
optimized molecule for each input molecule, Modof-pipem has been developed
to output multiple optimized molecules for each input molecule. Details about
Modof-pipem are provided in Supplementary Section 2.

The advantages of this iterative, one-fragment-at-one-time optimization
process include the following: (1) it is easier to control intermediate optimization
steps so as to result in optimized molecules of desired similarities and properties;
(2) it is easier to optimize multiple fragments in a molecule that are far apart; (3)
it follows a rational molecule design process11 and thus could enable more insights
and inform in vitro lead optimization.

Model training. During model training, we apply teacher forcing to feed the
ground truth instead of the prediction results to the sequential decoding process.
Following the idea of VAE, we minimize the following loss function to maximize
the likelihood P(My∣z, Mx). Thus, the optimization problem is formulated as

min
Θ

−βDKL(qϕ(z|Mx,My) ∥ pθ(z)) + Eqϕ(z|Mx,My)[log pθ(My|z, Mx)], (11)

where Θ is the set of parameters, qϕ() is an estimated posterior probability
function (Modof-encoder), pθ(My∣z, Mx) is the probabilistic decoder representing
the likelihood of generating My given the latent embedding z and Mx, and the

NAtuRe MAChiNe iNtelligeNCe | VOL 3 | DECEMBEr 2021 | 1040–1049 | www.nature.com/natmachintell 1047

http://www.nature.com/natmachintell

Articles NATure MAcHiNe iNTelligeNce

prior pθ(z) follows N (0, I). In the above problem, DKL() is the Kullback–Leibler
divergence between qϕ() and pθ(). Specifically, the second term represents the
prediction or empirical error, defined as the sum of all the loss functions in the
above six predictions (equations (5) to (10)). We use AMSGRAD51 to optimize the
learning objective.

Data availability
The data used in this manuscript are available publicly from Chen et al.52 and
https://github.com/ziqi92/Modof. Source data are provided with this paper.

Code availability
The code for Modof, Modof-pipe and Modof-pipem is publicly available from Chen
et al.52 and https://github.com/ziqi92/Modof.

Received: 27 December 2020; Accepted: 4 October 2021;
Published online: 9 December 2021

References
 1. Jorgensen, W. L. Efficient drug lead discovery and optimization. Acc. Chem.

Res. 42, 724–733 (2009).
 2. Verdonk, M. L. & Hartshorn, M. J. Structure-guided fragment screening for

lead discovery. Curr. Opin. Drug Discov. Dev. 7, 404–410 (2004).
 3. de Souza Neto, L. R. et al. In silico strategies to support fragment-to-lead

optimization in drug discovery. Front. Chem 8, 93 (2020).
 4. Hoffer, L. et al. Integrated strategy for lead optimization based on fragment

growing: the diversity-oriented-target-focused-synthesis approach. J. Med.
Chem. 61, 5719–5732 (2018).

 5. Gerry, C. J. & Schreiber, S. L. Chemical probes and drug leads from advances
in synthetic planning and methodology. Nat. Rev. Drug Discov. 17, 333–352
(2018).

 6. Sattarov, B. et al. De novo molecular design by combining deep autoencoder
recurrent neural networks with generative topographic mapping. J. Chem. Inf.
Model. 59, 1182–1196 (2019).

 7. Sanchez-Lengeling, B. & Aspuru-Guzik, A. Inverse molecular design using
machine learning: generative models for matter engineering. Science 361,
360–365 (2018).

 8. Jin, W., Barzilay, R. & Jaakkola, T. Junction tree variational autoencoder for
molecular graph generation. In Proc. Machine Learning Research Vol. 80
(eds Dy, J. & Krause, A.), 2323–2332 (PMLR, 2018).

 9. You, J., Liu, B., Ying, Z., Pande, V. & Leskovec, J. Graph convolutional policy
network for goal-directed molecular graph generation. In Advances in Neural
Information Processing Systems Vol. 31 (eds Bengio, S. et al.) 6410–6421
(Curran Associates, 2018).

 10. Murray, C. & Rees, D. The rise of fragment-based drug discovery. Nat. Chem.
1, 187–192 (2009).

 11. Hajduk, P. J. & Greer, J. A decade of fragment-based drug design: strategic
advances and lessons learned. Nat. Rev. Drug Discov. 6, 211–219 (2007).

 12. Shi, C. et al. Graphaf: a flow-based autoregressive model for molecular graph
generation. In Proc. 8th International Conference on Learning Representations
(OpenReview.net, 2020).

 13. Zang, C. & Wang, F. Moflow: an invertible flow model for generating
molecular graphs. In Proc. 26th ACM SIGKDD Conference on Knowledge
Discovery and Data Mining (eds Gupta, R. et al.) 617–626 (ACM, 2020).

 14. Jin, W., Yang, K., Barzilay, R. & Jaakkola, T. S. Learning multimodal
graph-to-graph translation for molecule optimization. In Proc. 7th
International Conference on Learning Representations (2019).

 15. Jin, W., Barzilay, R. & Jaakkola, T. S. Hierarchical generation of molecular
graphs using structural motifs. In Proc. 37th International Conference on
Machine Learning, Proceedings of Machine Learning Research Vol. 119 (eds
Daumé, H. III & Singh, H.) 4839–4848 (PMLR, 2020).

 16. Podda, M., Bacciu, D. & Micheli, A. A deep generative model for
fragment-based molecule generation. In Proc. Twenty Third International
Conference on Artificial Intelligence and Statistics, Proc. Machine Learning
Research Vol. 108 (eds Chiappa, S. & Calandra, R.) 2240–2250 (PMLR, 2020).

 17. Ji, C., Zheng, Y., Wang, R., Cai, Y. & Wu, H. Graph Polish: a novel graph
generation paradigm for molecular optimization. Preprint at https://arxiv.org/
abs/2008.06246 (2021).

 18. Lim, J., Hwang, S.-Y., Moon, S., Kim, S. & Kim, W. Y. Scaffold-based
molecular design with a graph generative model. Chem. Sci. 11,
1153–1164 (2020).

 19. Ahn, S., Kim, J., Lee, H. & Shin, J. Guiding deep molecular optimization with
genetic exploration. In Advances in Neural Information Processing Systems Vol.
33 (eds Larochelle, H. et al.) (Curran Associates, 2020).

 20. Nigam, A., Friederich, P., Krenn, M. & Aspuru-Guzik, A. Augmenting genetic
algorithms with deep neural networks for exploring the chemical space. In
Proc. 8th International Conference on Learning Representations (OpenReview.
net, 2020).

 21. Wildman, S. A. & Crippen, G. M. Prediction of physicochemical parameters
by atomic contributions. J. Chem. Inf. Comput. Sci. 39, 868–873 (1999).

 22. Ertl, P. & Schuffenhauer, A. Estimation of synthetic accessibility score of
drug-like molecules based on molecular complexity and fragment
contributions. J. Cheminf. 1, 8 (2009).

 23. Sterling, T. & Irwin, J. J. Zinc 15—ligand discovery for everyone. J. Chem. Inf.
Model. 55, 2324–2337 (2015).

 24. Gómez-Bombarelli, R. et al. Automatic chemical design using a data-driven
continuous representation of molecules. ACS Cent. Sci. 4, 268–276 (2018).

 25. Abu-Aisheh, Z., Raveaux, R., Ramel, J.-Y. & Martineau, P. An exact graph edit
distance algorithm for solving pattern recognition problems. In Proc.
International Conference on Pattern Recognition Applications and Methods Vol.
1, 271–278 (SciTePress, 2015).

 26. Sanfeliu, A. & Fu, K. A distance measure between attributed relational
graphs for pattern recognition. IEEE Trans. Syst. Man Cybern. SMC-13,
353–362 (1983).

 27. Lipinski, C. A. Lead- and drug-like compounds: the rule-of-five revolution.
Drug Discov. Today Technol. 1, 337–341 (2004).

 28. Ghose, A. K., Viswanadhan, V. N. & Wendoloski, J. J. A knowledge-based
approach in designing combinatorial or medicinal chemistry libraries for
drug discovery. 1. A qualitative and quantitative characterization of known
drug databases. J. Comb. Chem. 1, 55–68 (1999).

 29. Whiteson, S., Tanner, B., Taylor, M. E. & Stone, P. Protecting against
evaluation overfitting in empirical reinforcement learning. In Proc. 2011 IEEE
Symposium on Adaptive Dynamic Programming and Reinforcement Learning
(eds Sarangapani, J. et. al.) 120–127 (IEEE, 2011).

 30. Zhang, C., Vinyals, O., Munos, R. & Bengio, S. A study on overfitting in deep
reinforcement learning. Preprint at https://arxiv.org/abs/1804.06893 (2018).

 31. Lipinski, C. A., Lombardo, F., Dominy, B. W. & Feeney, P. J. Experimental and
computational approaches to estimate solubility and permeability in drug
discovery and development settings. Adv. Drug Deliv. Rev. 46, 3–26 (2001).

 32. Rokitskaya, T. I., Luzhkov, V. B., Korshunova, G. A., Tashlitsky, V. N. &
Antonenko, Y. N. Effect of methyl and halogen substituents on the
transmembrane movement of lipophilic ions. Phys. Chem. Chem. Phys. 21,
23355–23363 (2019).

 33. Bickerton, G. R., Paolini, G. V., Besnard, J., Muresan, S. & Hopkins, A. L.
Quantifying the chemical beauty of drugs. Nat. Chem. 4, 90–98 (2012).

 34. Olivecrona, M., Blaschke, T., Engkvist, O. & Chen, H. Molecular de-novo
design through deep reinforcement learning. J. Cheminf 9, 48 (2017).

 35. Kusner, M. J., Paige, B. & Hernández-Lobato, J. M. Grammar variational
autoencoder. In Proc. 34th International Conference on Machine Learning,
Proceedings of Machine Learning Research Vol. 70 (eds Precup, D. & Teh, Y.
W.) 1945–1954 (PMLR, 2017).

 36. De Cao, N. & Kipf, T. MolGAN: an implicit generative model for small
molecular graphs. In ICML 2018 Workshop on Theoretical Foundations and
Applications of Deep Generative Models (2018).

 37. Zhou, Z., Kearnes, S., Li, L., Zare, R. N. & Riley, P. Optimization of molecules
via deep reinforcement learning. Sci. Rep. 9, 10752 (2019).

 38. Wainberg, M., Merico, D., Delong, A. & Frey, B. J. Deep learning in
biomedicine. Nat. Biotechnol. 36, 829–838 (2018).

 39. Kim, S. et al. PubChem in 2021: new data content and improved web
interfaces. Nucleic Acids Res. 49, D1388–D1395 (2020).

 40. Gao, W. & Coley, C. W. The synthesizability of molecules proposed by
generative models. J. Chem. Inf. Model. 60, 5714–5723 (2020).

 41. Segler, M. H. S., Preuss, M. & Waller, M. P. Planning chemical syntheses with
deep neural networks and symbolic AI. Nature 555, 604–610 (2018).

 42. Kishimoto, A., Buesser, B., Chen, B. & Botea, A. Depth-first proof-number
search with heuristic edge cost and application to chemical synthesis
planning. In Advances in Neural Information Processing Systems Vol. 32 (eds
Wallach, H. M. et al.) 7224–7234 (Curran Associates, 2019).

 43. Stokes, J. M. et al. A deep learning approach to antibiotic discovery. Cell 180,
688–702 (2020).

 44. Jumper, J. et al. Highly accurate protein structure prediction with AlphaFold.
Nature 596, 583–589 (2021).

 45. Liu, J. & Ning, X. Multi-assay-based compound prioritization via assistance
utilization: a machine learning framework. J. Chem. Inf. Model. 57,
484–498 (2017).

 46. Liu, J. & Ning, X. Differential compound prioritization via bidirectional
selectivity push with power. J. Chem. Inf. Model. 57, 2958–2975 (2017).

 47. Gilmer, J., Schoenholz, S. S., Riley, P. F., Vinyals, O. & Dahl, G. E. Neural
message passing for quantum chemistry. In Proc. 34th International
Conference on Machine Learning Vol. 70 (eds Precup, D. & Teh, Y. W.)
1263–1272 (PMLR, 2017).

 48. Xu, K., Hu, W., Leskovec, J. & Jegelka, S. How powerful are graph neural
networks? In Proc. 7th International Conference on Learning Representations
(OpenReview.net, 2019).

 49. Kingma, D. P. & Welling, M. Auto-encoding variational Bayes. In Proc. 2nd
International Conference on Learning Representations (eds. Bengio, Y. &
LeCun, Y.) (OpenReview.net, 2014).

NAtuRe MAChiNe iNtelligeNCe | VOL 3 | DECEMBEr 2021 | 1040–1049 | www.nature.com/natmachintell1048

https://github.com/ziqi92/Modof
https://github.com/ziqi92/Modof
https://arxiv.org/abs/2008.06246
https://arxiv.org/abs/2008.06246
https://arxiv.org/abs/1804.06893
http://www.nature.com/natmachintell

ArticlesNATure MAcHiNe iNTelligeNce

 50. Wildman, S. A. & Crippen, G. M. Prediction of physicochemical parameters
by atomic contributions. J. Chem. Inf. Comput. Sci. 39, 868–873 (1999).

 51. Reddi, S. J., Kale, S. & Kumar, S. On the convergence of Adam and beyond.
In Proc. 6th International Conference on Learning Representations
(OpenReview.net, 2018).

 52. Chen, Z. A deep generative model for molecule optimization via one
fragment modification. Zenodo https://doi.org/10.5281/zenodo.4667928
(2021).

Acknowledgements
This project was made possible, in part, by support from the National Science
Foundation grant nos. IIS-1855501 (X.N.), IIS-1827472 (X.N.), IIS-2133650 (X.N.
and S.P.) and OAC-2018627 (S.P.), the National Library of Medicine grant nos.
1R01LM012605-01A1 (X.N.) and 1R21LM013678-01 (X.N.), an AWS Machine Learning
Research Award (X.N.) and The Ohio State University President’s Research Excellence
programme (X.N.). Any opinions, findings and conclusions or recommendations
expressed in this paper are those of the authors and do not necessarily reflect the views of
the funding agencies. We thank X. Wang and X. Cheng for their constructive comments.

Author contributions
X.N. conceived the research. X.N. and S.P. obtained funding for the research and
co-supervised Z.C. Z.C., M.R.M., S.P. and X.N. designed the research. Z.C. and

X.N. conducted the research, including data curation, formal analysis, methodology
design and implementation, result analysis and visualization. Z.C. drafted the original
manuscript. M.R.M. provided comments on the original manuscript. Z.C., X.N. and
S.P. conducted the manuscript editing and revision. All authors reviewed the final
manuscript.

Competing interests
M.R.M. was employed by NEC Labs America. The remaining authors declare no
competing interests.

Additional information
Supplementary information The online version contains supplementary material
available at https://doi.org/10.1038/s42256-021-00410-2.

Correspondence and requests for materials should be addressed to Xia Ning.

Peer review information Nature Machine Intelligence thanks Michael Withnall and
Benjamin Sanchez-Lengeling for their contribution to the peer review of this work.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

© The Author(s), under exclusive licence to Springer Nature Limited 2021

NAtuRe MAChiNe iNtelligeNCe | VOL 3 | DECEMBEr 2021 | 1040–1049 | www.nature.com/natmachintell 1049

https://doi.org/10.5281/zenodo.4667928
https://doi.org/10.1038/s42256-021-00410-2
http://www.nature.com/reprints
http://www.nature.com/natmachintell

Reproduced with permission of copyright owner. Further reproduction
prohibited without permission.

	A deep generative model for molecule optimization via one fragment modification
	Related work
	Problem definition
	Materials
	Data.
	Training data generation
	Molecule similarity calculation

	Baseline methods.

	Experimental results
	Overall comparison on plogP optimization.
	Case study.
	Performance on DRD2 and QED optimization.

	Discussion and conclusions
	Molecule optimization using simulated properties.
	Synthesizability and retrosynthesis.
	In vitro validation.
	Other issues in computational molecule optimization.
	Conclusions.

	Methods
	Molecule representations and notations
	Molecular difference encoder (Modof-encoder)
	Step 1 Atom embedding over graphs (GMPN)
	Step 2 Node embedding over junction trees (TMPN)
	Step 3 Difference embedding

	Molecular difference decoder (Modof-decoder)
	Step 1 Disconnection site prediction
	Step 2 Removal fragment prediction
	Step 3 Intermediate representation
	Step 4 New fragment attachment
	Sampling schemes

	Modof pipelines
	Model training

	Acknowledgements
	Fig. 1 Modof model overview.
	Fig. 2 Modof-pipe examples for plogP optimization.
	Fig. 3 Modof-pipe examples for DRD2, QED and multi-property optimization.
	Table 1 Overall comparison on optimizing plogP.
	Table 2 Overall comparison on optimizing DRD2 and QED.
	Table 3 Notation.

