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Molecule optimization is a critical step in drug discovery 
for improving the desired properties of drug candidates 
through chemical modification. For example, in lead 

optimization1 (molecules showing both activity and selectivity 
towards a given target), the chemical structures of the lead mol-
ecules can be altered to improve their selectivity and specificity. 
Conventionally, such a molecule optimization process is planned 
based on knowledge and experiences from medicinal chemists, 
and is carried out via fragment-based screening or synthesis2–5. 
Thus, it is not scalable or automated. Recent in silico approaches 
using deep learning have enabled alternative computationally gen-
erative processes to accelerate the conventional paradigm. These 
deep-learning methods learn from string-based molecule repre-
sentations (SMILES)6,7 or molecular graphs8,9, and generate new 
ones accordingly (for example, via connecting atoms and bonds) 
with better properties. Although computationally attractive, these 
methods do not conform to the in vitro molecule optimization pro-
cess in one very important aspect: molecule optimization needs to 
retain the major scaffold of a molecule, but generating entire, new 
molecular structures may not reproduce the scaffold. Therefore, 
these methods are limited in their potentials to inform and direct  
in vitro molecule optimization.

We propose a novel generative model for molecule optimiza-
tion that better approximates in silico chemical modification. Our 
method is referred to as ‘modifier with one fragment’, or Modof. 
Following the idea of fragment-based drug design10,11, Modof pre-
dicts a single site of disconnection at a molecule and modifies the 
molecule by changing the fragments (for example, ring systems, 
linkers and side chains) at that site. Distinctly from existing mol-
ecule optimization approaches that encode and decode whole 
molecular graphs, Modof learns from and encodes the difference 
between molecules before and after optimization at one discon-
nection site. To modify a molecule, Modof generates only one frag-
ment that instantiates the expected difference by decoding a sample 

drawn from the latent ‘difference’ space. Modof then removes the 
original fragment at the disconnection site, and attaches the gener-
ated fragment at the site. Figure 1 presents an overview of Modof. 
By sampling multiple times, Modof is able to generate multiple opti-
mized candidates. A pipeline of multiple, identical Modof models, 
denoted Modof-pipe, is implemented to optimize molecules at mul-
tiple disconnection sites through different Modof models iteratively, 
with the output molecule from one Modof model as the input to the 
next. Modof-pipe is further enhanced into Modof-pipem to allow 
modification of one molecule into multiple optimized ones as the 
final output.

Modof has the following advantages:

•	 It modifies one fragment at a time. It better approximates the 
in vitro chemical modification and retains the majority of 
molecular scaffolds. Thus, it potentially better informs and 
directs in vitro molecule optimization.

•	 It only encodes and decodes the fragment that needs modifica-
tion and facilitates better modification performance.

•	 Modof-pipe modifies multiple fragments at different disconnec-
tion sites, iteratively. It enables easier control over and intuitive 
deciphering of the intermediate modification steps, and facili-
tates better interpretability of the entire modification process.

•	 Modof is less complex than the state of the art. It has at least 40% 
fewer parameters and uses 26% less training data.

•	 Modof-pipe outperforms the state-of-the-art methods on 
benchmark datasets in optimizing the octanol–water parti-
tion coefficient penalized by synthetic accessibility (SA) and 
ring size, with 81.2% improvement without molecular similar-
ity constraints on the optimized molecules, and 51.2%, 25.6% 
and 9.2% improvement if the optimized molecules need to be at 
least 0.2, 0.4 and 0.6 similar (in Tanimoto coefficient over 2,048- 
dimensional (2,048D) Morgan fingerprints with radius of 2) to 
those before optimization, respectively.
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•	 Modof-pipem improves the performance of Modof-pipe by at 
least 17.8%.

•	 Modof-pipem and Modof-pipe also show superior performance 
on two other benchmarking tasks, optimizing molecule binding 
affinities against the dopamine D2 receptor and improving the 
drug-likeness estimated by quantitative measures.

Related work
A variety of deep generative models have been developed to generate 
molecules with desired properties. These generative models include 
reinforcement learning (RL)-based models, generative adversarial 
networks (GAN)-based models, flow-based generative models and 
variational autoencoder (VAE)-based models, among others. Among 
RL-based models, You et al.9 developed a graph convolutional policy 
network (GCPN) to sequentially add new atoms and corresponding 
bonds to construct new molecules. In the flow-based models, Shi 
et al.12 developed an autoregressive model (GraphAF), in which they 
learned an invertible mapping between Gaussian distribution and 
molecule structures, and applied RL to fine-tune the generation pro-
cess. Zang and Wang13 developed a flow-based method (MoFlow) in 
which they utilized bond flow to learn an invertible mapping between 
bond adjacency tensors and Gaussian distribution, and then applied 
a graph conditional flow to generate an atom-type matrix given 
the bond adjacency tensors. VAE-based generative models are also 
very popular in molecular graph generation. Jin et al.8 first decom-
posed a molecular graph into a junction tree of chemical substruc-
tures, and then used a junction tree VAE (JT-VAE) to generate and 
assemble new molecules. Jin et al.14 developed a junction tree-based 
encoder–decoder neural model (JTNN), which learns a translation 
mapping between a pair of molecules to optimize one into another. 
Jin et al.15 replaced the small chemical substructures used in JT-VAE 
with larger graph motifs, and modified JTNN into an autoregressive 
hierarchical encoder–decoder model (HierG2G). Additional related 
work including fragment-based VAE16, Teacher and Student polish  
(T&S polish)17, scaffold-based VAE18 and other genetic algorithm- 
based methods19,20 are discussed in Supplementary Section 1.

The existing generative methods typically encode the entire 
molecular graphs and generate whole, new molecules from an empty 
or a randomly selected structure. Unlike these methods, Modof 
learns from and encodes the difference between molecules before 
and after optimization. The learning and generative processes are 
thus less complex and are able to retain major molecular scaffolds.

Problem definition
Following Jin et al.8, we focused on the optimization of the partition 
coefficients (logP) measured by Crippen logP (ref. 21) and penal-
ized by SA22 and ring size. Crippen logP is a predicted value of the 

experimental logP using the Wildman and Crippen approach21, and 
has been demonstrated to have a strong correlation (for example, 
r2 = 0.918; ref. 21) with the experimental logP. Because it is impracti-
cal to measure the experimental logP values for a large set of mol-
ecules, such as our training set (Supplementary Section 3), or for 
in silico generated molecules, using Crippen logP will enable scal-
able learning from a large set of molecules, and effective yet accu-
rate evaluation on in silico-optimized molecules. The combined 
measurement of logP, SA and ring size is referred to as penalized 
logP, denoted plogP. Higher plogP values indicate higher molecule 
concentrations in the lipid phase with potentially good SA and 
simple ring structures. Note that Modof can be used to optimize 
other properties as well, with the property of interest used instead 
of plogP. The optimization of other properties is discussed in 
Supplementary Section 11. Optimizing multiple properties simulta-
neously is discussed in Supplementary Section 12. In the rest of this 
Article, ‘property’ is by default referred to plogP.

Problem definition: Given a molecule Mx, molecule optimiza-
tion aims to modify Mx into another molecule My such that (1) My is 
similar to Mx in its molecular structures (similarity constraint), that 
is, sim(Mx, My) ≥ δ (δ is a threshold), and (2) My is better than Mx 
in the property of interest (for example, plogP(My) > plogP(Mx)) 
(property constraint).

Materials
Data. We used the benchmark training dataset provided by Jin and 
colleagues15. This dataset was extracted from the ZINC dataset23,24 
and contains 74,887 pairs of molecules. Every two paired molecules 
are similar in their molecule structures but different in their plogP 
values. Using the DF-GED25 algorithm, we extracted 55,686 pairs of 
molecules from Jin’s training dataset such that each extracted pair 
had only one disconnection site. That is, our training data amount 
to 26% less than in Jin’s dataset. We used these extracted pairs of 
molecules (104,708 unique molecules) as our training data. Details 
about training data generation are discussed in the next section. We 
used Jin’s validation set for parameter tuning, and tested on Jin’s test 
dataset of 800 molecules. More details about the training data are 
provided in Supplementary Section 3.

Training data generation. We used a pair of molecules (Mx, My) as a 
training instance in Modof, where Mx and My satisfy both the simi-
larity and property constraints, and My is different from Mx in only 
one fragment at one disconnection site. We constructed such train-
ing instances as follows. We first quantified the difference between 
Mx and My using the optimal graph edit distance26 between their 
junction tree representations Tx and Ty, and derived the optimal edit 
paths to transform Tx to Ty. Such quantification also identified dis-
connection sites at Mx during its graph comparison. Details about 

Table 1 | Overall comparison on optimizing plogP

Model δ = 0.0 δ = 0.2 δ = 0.4 δ = 0.6

imprv ± s.d. Sim ± s.d. imprv ± s.d. Sim ± s.d. imprv ± s.d. Sim ± s.d. imprv ± s.d. Sim ± s.d.

JT-VAE 1.91 ± 2.04 0.28 ± 0.15 1.68 ± 1.85 0.33 ± 0.13 0.84 ± 1.45 0.51 ± 0.10 0.21 ± 0.71 0.69 ± 0.06

GCPN 4.20 ± 1.28 0.32 ± 0.12 4.12 ± 1.19 0.34 ± 0.11 2.49 ± 1.30 0.47 ± 0.08 0.79 ± 0.63 0.68 ± 0.08

JTNN – – – – 3.55 ± 1.54 0.46 ± 0.06 2.33 ± 1.19 0.66 ± 0.05

HierG2G – – – – 3.98 ± 1.46 0.46 ± 0.06 2.49 ± 1.09 0.66 ± 0.05

GraphAF 2.94 ± 1.55 0.31 ± 0.15 2.65 ± 1.29 0.35 ± 0.12 1.62 ± 1.16 0.51 ± 0.10 0.34 ± 0.46 0.69 ± 0.06

MoFlow 2.39 ± 1.47 0.54 ± 0.22 2.26 ± 1.37 0.59 ± 0.17 2.04 ± 1.24 0.65 ± 0.12 1.46 ± 1.09 0.71 ± 0.07

Modof-pipe 7.61 ± 2.30 0.21 ± 0.15 6.23 ± 1.77 0.34 ± 0.12 5.00 ± 1.53 0.48 ± 0.09 2.72 ± 1.53 0.65 ± 0.05

Modof-pipem 9.37 ± 2.04 0.12 ± 0.08 7.58 ± 1.65 0.27 ± 0.07 5.89 ± 1.57 0.46 ± 0.06 3.14 ± 1.77 0.65 ± 0.05

Imprv, the average improvement in plogP; s.d., standard deviation; sim, similarity between the original molecules Mx and optimized molecules My; –, not reported in the literature. We calculated ‘sim ± s.d.’ 
for JTNN and HierG2G using the optimized molecules provided by JTNN and our reproduced results for HierG2G, respectively.
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this process is available in Supplementary Section 4. Identified mol-
ecule pairs satisfying similarity and property constraints with only 
one site of disconnection were used as training instances. For a pair 
of molecules with a high similarity (for example, above 0.6), it is 
very likely that they have only one disconnection site, as demon-
strated in Supplementary Section 5.

Molecule similarity calculation. We used 2,048D binary Morgan 
fingerprints with radius of 2 to represent molecules and used the 
Tanimoto coefficient to measure molecule similarities.

Baseline methods. We compared Modof with state-of-the-art 
baseline methods for molecule optimization, including JT-VAE8, 
GCPN9, JTNN14, HierG2G15, GraphAF12 and MoFlow13:

•	 JT-VAE encodes and decodes junction trees and assembles new, 
entire molecular graphs based on decoded junction trees.

•	 GCPN applies a graph convolutional policy network and itera-
tively generates molecules by adding atoms and bonds, one by 
one.

•	 JTNN learns from molecule pairs and performs molecule opti-
mization to translate molecular graphs.

•	 HierG2G encodes molecular graphs in a hierarchical fashion, 
and generates new molecules by generating and connecting 
structural motifs.

•	 GraphAF learns an invertible mapping between a prior distribu-
tion and molecular structures, and uses reinforcement learning 
to fine-tune the model for molecule optimization.

•	 MoFlow learns an invertible mapping between bond adjacency 
tensors and Gaussian distribution, and then applies a graph con-
ditional flow to generate an atom-type matrix as the representa-
tion of a new molecule from the mapping.

experimental results
Overall comparison on plogP optimization. Table 1 presents an 
overall comparison of Modof-pipe and Modof-pipem, both with a 
maximum of five iterations, and the baseline methods on plogP 
optimization. Note that Modof-pipem outputs 20 optimized mol-
ecules, as do JTNN and HierG2G. Following GCPN, an addi-
tional constraint of molecule size is imposed into Modof-pipe 
to limit the size of the optimized molecules to be at most 38.  

As Crippen logP tends to be large on large molecules, this addi-
tional constraint also prevents Modof-pipe from improving  
logP by simply increasing the molecule size. When there is no 
similarity constraint (δ = 0), that is, it is not required to produce 
similar molecules out of the optimization, Modof-pipe is able 
to generate highly optimized molecules with substantially bet-
ter plogP improvement (7.61 ± 2.30), with 81.2% improvement 
from the best baseline GCPN (4.20 ± 1.28), although with lower 
similarities between the molecules before and after the optimi-
zation. Modof-pipem achieves even better performance, with  
a plogP improvement of 9.37 ± 2.04, that is, 123.1% better than 
GCPN. When the similarity constraint takes effect (for example, 
δ = 0.2, 0.4 and 0.6), Modof-pipe consistently produces molecules 
that are similar to those before optimization and also with better  
properties. At δ = 0.2, 0.4 and 0.6, Modof-pipe achieves better  
property improvement (6.23 ± 1.77, 5.00 ± 1.53 and 2.72 ± 1.68, 
respectively) than all the best baselines (GCPN with 4.12 ± 1.19 at 
δ = 0.2 and HierG2G with 3.98 ± 1.47 at δ = 0.4 and 2.49 ± 1.09 at 
δ = 0.6), with 51.2%, 25.6% and 9.2% improvement over the base-
lines, respectively, although the baselines generate more similar 
molecules than Modof-pipe. Modof-pipem achieves the best per-
formance on property improvement (7.58 ± 1.65, 5.89 ± 1.57 and 
3.14 ± 1.77, respectively) with 84.0%, 48.0% and 26.1% improve-
ment over the best baselines, respectively.

When δ is large, we could observe that JTNN and HierG2G tend 
to decode more aromatic rings, leading to large molecules with 
over-estimated similarities. However, Modof tends to stop if there 
are many aromatic rings and thus produces more drug-like mole-
cules27,28. Issues related to similarity calculation that will affect opti-
mization performance are discussed in Supplementary Section 7.  
Still, the overall comparison demonstrates that Modof-pipe and 
Modof-pipem outperform or at least achieve similar performance to 
state-of-the-art methods.

It is worth noting that our performance is reported on the exact 
benchmark test set. In our study, we observed some issues of unfair 
comparison in the existing baseline methods. For example, some 
baseline methods compared and reported results on a test set other 
than the benchmark test set. Some reinforcement learning methods 
used the test molecules to either directly train a model or fine-tune a 
pre-trained model to optimize the test molecules, which could lead 
to artificially high performance29,30. Detailed discussions on com-
parison fairness are provided in Supplementary Section 8.
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Fig. 1 | Modof model overview. a, The Modof-encoder. Modof first generates atom embeddings of Mx/My over molecular graphs Gx/Gy using GMPNs, 
as well as node embeddings over corresponding junction trees Tx/Ty using TMPNs. The difference between Tx and Ty at the disconnection site (circles 
in Tx/Ty) is encoded (DE) into h−xy and h+xy, which then construct two normal distributions z−xy and z+xy. b, The Modof-decoder. Using zxy, Modof conducts 
disconnection site prediction (DSP) to identify site nd. At neighbours of nd, Modof conducts removal fragment prediction (rFP) to remove the fragment 
at nd. Then, Modof produces an intermediate representation (IMr) of the remaining scaffold (G∗, T ∗). Over (G∗, T ∗), Modof performs new fragment 
attachment (NFA) by interactively performing child node connection prediction (NFA-cp), child node type prediction (NFA-ntp) and attachment point 
prediction (NFA-app) to optimize Mx. In molecule representations, substructures in molecular graphs and their corresponding nodes in junction trees are 
coded in the same colours.
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Additional experimental results are provided in Supplementary 
Section 9, such as overall Modof-pipe performance, transforma-
tion over chemical spaces and retaining of molecule scaffolds. 
Specifically, we compared model complexities (Supplementary 
Section 9.7), showing that Modof uses at least 40% fewer param-
eters and 26% less training data but outperforms or achieves 
results that are comparable to these state-of-the-art baselines. 
For reproducibility purposes, detailed parameters are reported in  
Supplementary Section 9.8.

Case study. Among training molecules, the top-five most popu-
lar fragments that have been removed from Mx are presented in  
Fig. 2a with their canonical SMILE strings. The top-five most 
popular fragments to be attached to generate My are presented in  
Fig. 2b. Overall, the removal fragments in training data comprise, 
on average, 2.85 atoms and the new attached fragments comprise 
7.55 atoms; that is, the optimization is typically done by removing 
small fragments and then attaching larger fragments.

Figure 2c presents an example of molecule Mx (that is, M(0)
x ) 

being optimized via four iterations in Modof-pipe into another mol-
ecule M(4)

x  under δ = 0.4. At each iteration, only one small fragment 
(highlighted in red in the figure) is modified from its input, and the 
plogP value (below each molecule) is improved. In the first itera-
tion, M(1)

x  is modified from M(0)
x  by removal of the hydroxyl group 

in M(0)
x  and addition of the 2-chlorophenyl group. The hydroxyl 

group is polar and tends to increase the water solubility of the mol-
ecules, while the 2-chlorophenyl group is non-polar and thus more 
hydrophobic. In addition, the increase in molecular weight brought 
by the chlorophenyl substituent would contribute to the lower water 
solubility as well. Thus, the modification from the hydroxyl group 
to the chlorophenyl group induces the logP increase (from 0.5226 to 
3.9465). Meanwhile, the introduction of the 2-chlorophenyl group 
to the cyclobutyl group adds complexity to the synthesis, in addition 
to possible steric effects due to the ortho-substitution on the aro-
matic ring, and induces a decrease in SA (from −4.8669 to −4.9955). 
In the second iteration, the methyl group in M(1)

x  is replaced by a tri-
fluoromethyl group. The trifluoromethyl group is more hydropho-
bic than the methyl group and thus increases the logP value of M(2)

x  
over M(1)

x  (from 3.9465 to 4.6569). Meanwhile, the slightly larger 
molecule M(2)

x  has slightly worse SA (from −4.9955 to −5.1168). If 
logP is preferred to be lower than 5 as proposed in the Lipinski’s rule 
of five31, Modof-pipe can be stopped at this iteration. Otherwise, in 
the following two iterations, more halogens are added to the aro-
matic ring, which could make the aromatic ring less polar and fur-
ther decrease water solubility and increase the logP values32. These 
four iterations highlight the interpretability of Modof-pipe corre-
sponding to chemical knowledge. Please note that all the modifi-
cations in Modof are learned in an end-to-end fashion from data, 
without any chemical rules or templates imposed a priori, empha-
sizing the power of Modof in learning from molecules.

In Fig. 2c, the molecule similarities between M(t)
x  (t = 1, ..., 4) 

and M(0)
x  are 0.630, 0.506, 0.421 and 0.411, respectively. This exam-

ple also shows that Modof is able to retain the major scaffold of a 
molecule and optimizes at different disconnection sites during the 
iterative optimization process. Additional analysis on fragments is 
provided in Supplementary Section 10.

Performance on DRD2 and QED optimization. In addition to 
improving plogP, another two popular benchmarking tasks for 
molecule optimization include improving molecule binding affini-
ties against the dopamine D2 receptor (DRD2) and improving 
the drug-likeness estimated by quantitative measures (QED)33. 
Specifically, given a molecule that does not bind well to the DRD2 
receptor (for example, with low binding affinities), the objective 
of optimizing the DRD2 property is to modify the molecule into 
another one that will better bind to DRD2. In the QED task, given Ta

bl
e 

2 
| O

ve
ra

ll 
co

m
pa

ris
on

 o
n 

op
tim

iz
in

g 
D

RD
2 

an
d 

Q
eD

M
od

el
O

pt
im

iz
in

g 
D

RD
2

O
pt

im
iz

in
g 

Q
eD

O
M

-p
ic

 (D
RD

2(
M

y)
 ≥

 0
.5

)
O

M
-t

rn
 (i

m
pr

v ≥
 0

.2
)

O
M

-p
ic

 (Q
eD

( M
y)

 ≥
 0

.9
)

O
M

-t
rn

 (i
m

pr
v ≥

 0
.1)

Ra
te

 (%
)

im
pr

v ±
 s.

d.
Si

m
 ±

 s.
d.

Ra
te

 (%
)

im
pr

v ±
 s.

d.
Si

m
 ±

 s.
d.

Ra
te

 (%
)

im
pr

v ±
 s.

d.
Si

m
 ±

 s.
d.

Ra
te

 (%
)

im
pr

v ±
 s.

d.
Si

m
 ±

 s.
d.

JT
N

N
78

.10
0.

83
 ±

 0
.17

0.
44

 ±
 0

.0
5

78
.3

0
0.

83
 ±

 0
.17

0.
44

 ±
 0

.0
5

60
.5

0
0.

17
 ±

 0
.0

3
0.

47
 ±

 0
.0

6
67

.3
8

0.
17

 ±
 0

.0
3

0.
47

 ±
 0

.0
7

H
ie

rG
2G

82
.0

0
0.

83
 ±

 0
.16

0.
44

 ±
 0

.0
5

84
.0

0
0.

82
 ±

 0
.18

0.
44

 ±
 0

.0
5

75
.12

0.
18

 ±
 0

.0
3

0.
46

 ±
 0

.0
6

82
.3

8
0.

17
 ±

 0
.0

3
0.

46
 ±

 0
.0

6

JT
N

N
(m

)
43

.5
0

0.
77

 ±
 0

.15
0.

49
 ±

 0
.0

8
61

.6
0

0.
65

 ±
 0

.2
4

0.
49

 ±
 0

.0
8

40
.5

0
0.

17
 ±

 0
.0

3
0.

54
 ±

 0
.0

9
68

.5
0

0.
15

 ±
 0

.0
3

0.
54

 ±
 0

.0
9

H
ie

rG
2G

(m
)

51
.8

0
0.

78
 ±

 0
.15

0.
49

 ±
 0

.0
8

70
.2

0
0.

66
 ±

 0
.2

4
0.

49
 ±

 0
.0

8
37

.12
0.

17
 ±

 0
.0

3
0.

52
 ±

 0
.0

9
65

.8
8

0.
15

 ±
 0

.0
3

0.
53

 ±
 0

.10

M
od

of
-p

ip
e

74
.9

0
0.

83
 ±

 0
.14

0.
48

 ±
 0

.0
7

89
.0

0
0.

75
 ±

 0
.2

2
0.

48
 ±

 0
.0

7
40

.0
0

0.
17

 ±
 0

.0
3

0.
51

 ±
 0

.0
8

70
.0

0
0.

16
 ±

 0
.0

3
0.

51
 ±

 0
.0

8

M
od

of
-p

ip
em

88
.6

0
0.

88
 ±

 0
.12

0.
46

 ±
 0

.0
5

95
.9

0
0.

84
 ±

 0
.18

0.
46

 ±
 0

.0
5

66
.2

5
0.

18
 ±

 0
.0

3
0.

48
 ±

 0
.0

7
87

.6
2

0.
17

 ±
 0

.0
3

0.
48

 ±
 0

.0
7

O
M

-p
ic

: t
he

 o
pt

im
iz

ed
 m

ol
ec

ul
es

 th
at

 a
ch

ie
ve

 a
 c

er
ta

in
 p

ro
pe

rt
y 

im
pr

ov
em

en
t: 

(1
) f

or
 D

rD
2,

 th
e 

op
tim

iz
ed

 m
ol

ec
ul

es
 M

y s
ho

ul
d 

ha
ve

 D
rD

2 
sc

or
e 

no
 le

ss
 th

an
 0

.5
; (

2)
 fo

r Q
ED

, t
he

 o
pt

im
iz

ed
 m

ol
ec

ul
es

 M
y s

ho
ul

d 
ha

ve
 Q

ED
 s

co
re

 n
o 

le
ss

 th
an

 0
.9

. O
M

-t
rn

: t
he

 o
pt

im
iz

ed
 

m
ol

ec
ul

es
 th

at
 a

ch
ie

ve
 a

 p
ro

pe
rt

y 
im

pr
ov

em
en

t i
n 

a 
si

m
ila

r d
eg

re
e 

as
 in

 tr
ai

ni
ng

 d
at

a:
 (1

) f
or

 D
rD

2,
 th

e 
op

tim
iz

ed
 m

ol
ec

ul
es

 M
y s

ho
ul

d 
sa

tis
fy

 D
rD

2(
M

y)
 −

 D
rD

2(
M

x)
 ≥

 0
.2

; (
2)

 fo
r Q

ED
, t

he
 o

pt
im

iz
ed

 m
ol

ec
ul

es
 M

y s
ho

ul
d 

sa
tis

fy
 Q

ED
 s

co
re

s 
Q

ED
( M

y)
 −

 Q
ED

( M
x)

 ≥
 0

.1.
 r

at
e 

(%
) i

nd
ic

at
es

 th
e 

pe
rc

en
ta

ge
 o

f o
pt

im
iz

ed
 m

ol
ec

ul
es

 in
 e

ac
h 

gr
ou

p 
(O

M
, O

M
-p

ic
, O

M
-t

rn
) o

ve
r a

ll 
te

st
 m

ol
ec

ul
es

; i
m

pr
v,

 a
ve

ra
ge

 p
ro

pe
rt

y 
im

pr
ov

em
en

t; 
s.

d.
, s

ta
nd

ar
d 

de
vi

at
io

n;
 s

im
, s

im
ila

rit
y 

be
tw

ee
n 

th
e 

or
ig

in
al

 m
ol

ec
ul

es
 M

x a
nd

 o
pt

im
iz

ed
 m

ol
ec

ul
es

 M
y. 

Be
st

 ra
te

 v
al

ue
s 

ar
e 

sh
ow

n 
in

 b
ol

d.

NAtuRe MAChiNe iNtelligeNCe | VOL 3 | DECEMBEr 2021 | 1040–1049 | www.nature.com/natmachintell 1043

http://www.nature.com/natmachintell


Articles NATure MAcHiNe iNTelligeNce

a molecule that is not very drug-like, the objective of optimizing 
the QED property is to modify this molecule into a more ‘drug-like’ 
molecule. Table 2 presents the major results in success rates, prop-
erty improvement and similarity comparison under the similarity 
constraint δ = 0.4. The results demonstrate that Modof-pipem sub-
stantially outperforms or is comparable to the baseline methods in 
optimizing DRD2 and QED, when the success rates are measured 
either using the benchmark metrics14,15 (OM-pic in Table 2) or 
based on training data (OM-trn in Table 2). Figure 3a,b presents two 
examples of molecule optimization for DRD2 and QED property 
improvement. In Fig. 3b, in the first iteration, a 4-methoxyphenyl 
group is removed and a small chain of 2-fluoroethyl group is added, 
so the number of aromatic rings and the number of hydrogen-bond 
acceptors are reduced, which makes the compound more drug-like 
than its predecessor. In the second iteration, a cyclooctyl group 
is removed from M(1)

x  and a 2-fluorophenyl group is added. This 
modification may induce reduced flexibility—another preferred 
property of a successful drug. In the following iterations, some com-
monly used fragments in drug design are used to further modify the  
molecule into more drug-likeness. Note that, again, QED optimiza-
tion is completely learned from data in an end-to-end fashion with-
out any medicinal chemistry knowledge imposed by experts. The 
meaningful optimization in the example in Fig. 3b demonstrates the 
interpretability of Modof-pipe. More details about these two optimi-
zation tasks and results are provided in Supplementary Section 11.

We also conducted experiments to optimize both DRD2 
and QED properties of molecules simultaneously, that is, a 
multi-property optimization task. Details on this multi-property 
task and results are provided in Supplementary Section 12. Figure 3c  
presents an example of multi-property molecule optimization, in 

which both the DRD2 and QED scores of the molecule are consis-
tently increased with the iterations of optimization.

Discussion and conclusions
Molecule optimization using simulated properties. Most of the 
molecule properties considered in our experiments are based on 
simulated or predicted values rather than experimentally measured. 
That is, an independent simulation or machine learning model is first 
used to generate the property values for the benchmark dataset. For 
example, Crippen logP is estimated via the Wildman and Crippen 
approach21, synthesis accessibility is calculated using a scoring func-
tion over predefined fragments22, the DRD2 property is predicted 
using a support vector machine classifier34, and the QED property 
is predicted using a nonlinear classifier combining multiple desir-
ability functions of molecular properties33. Although all the existing 
generative models for molecule optimization8,9,13–16,19,35–37 use such 
simulated properties, there are both challenges and opportunities. 
Challenges arise when the simulation or machine learning mod-
els for those property predictions are not sufficiently accurate for 
various reasons (for example, limited or biased training molecules) 
and the generative models learned from the inaccurate property 
values would also be inaccurate or incorrect, resulting in gener-
ated molecules that could negatively impact the downstream drug 
development tasks. However, the opportunities due to the property 
simulation or prediction can be immense in fully unleashing the 
power of large-scale, data-driven learning paradigms to stimulate 
drug development as we continue to improve these simulations and 
predictions. Specifically, most deep learning-based models for drug 
development purposes, many of which have been demonstrated to 
be very promising38, are not possible without large-scale training 

a

O[C:1] N#[C:1] [O–][C:1]

–

[NH3
+][C:1] N[C:1]=O

b

CCSc1cccc[c:1]1 Clc1ccc([C:1])cc1 Clc1c[c:1]ccc1 Clc1cccc[c:1]1 c1ccc2sc([C:1])nc2c1

c

Mx
(0)

Mx
(0)

Mx
(1)

Mx
(1)

Mx
(2)

Mx
(2)

Mx
(3)

Mx
(3)

Mx
(4)−3.3556

logP: 0.5226
SA: −4.8669
Ring size: 0.0000

−1.1227
logP: 3.9465
SA: −4.9955
Ring size: 0.0000

−0.7730
logP: 4.6569
SA: −5.1168
Ring size: 0.0000

–0.4556
logP: 5.3103
SA: –5.2319
Ring size: 0.0000

–0.1201
logP: 6.1819
SA: –5.4588
Ring size: 0.0000

d

−1.2908
logP: 1.3159
SA: −3.6069
Ring size: 0.0000

2.0560
logP: 3.8622
SA: −2.2970
Ring size: 0.0000

1.4486
logP: 2.6945
SA: −2.1247
Ring size: 0.0000

2.8787
logP: 4.8758
SA: −2.2002
Ring size: 0.0000

Fig. 2 | Modof-pipe examples for plogP optimization. a, Visualization of popular removal fragments. b, Visualization of popular attaching fragments. 
c, Modof-pipe optimization example with multiple disconnection sites and multiple Modof iterations. d, Local optimization. Disconnection sites are 
highlighted in yellow. Modified fragments in each step are highlighted in red. retained scaffolds after Modof-pipe optimization are highlighted in sky blue. 
Numbers associated with Mx are the corresponding plogP values.
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data. Although it is impractical, if even possible, to experimentally 
measure the properties of interest for a large set of molecules (for 
example, more than 100,000 molecules as in our benchmark train-
ing data), the property simulation or prediction of the molecules 
enables large training data and makes the development of such deep 
learning methodologies possible. Fortunately, property prediction 
simulations or models have become more accurate (for example, 
98% accuracy for DRD234) due to the accumulation of experimental 
measurements39 and the strong learning power of innovative compu-
tational approaches. The accurate property simulation or prediction 
over large-scale molecule data and the powerful learning capabil-
ity of generative models from such molecule data will together have 
strong potential to further advance in silico drug development.

Synthesizability and retrosynthesis. Our experiments show that 
Modof is also able to improve synthesis accessibility (Supplementary 
Section 9.4). However, it does not necessarily mean that the gener-
ated molecules can be easily synthesized. This limitation of Modof 
is actually common to almost all the computational approaches for 
molecule generation. A recent study has shown that many mol-
ecules generated via deep learning are not easily synthesizable40, 
which limits the translational potentials of the generative models 
in making real impacts in drug development. On the other hand, 
retrosynthesis prediction via deep learning, which aims to iden-
tify a feasible synthesis path for a given molecule through learning 
and searching from a large collection of synthesis paths, has been 
an active research area41,42. Optimizing molecules towards not only 
better properties but also better synthesizability, particularly with 
explicit synthesis paths identified simultaneously, could be a highly 
interesting and challenging future research direction. Ultimately, we 
would like to develop a comprehensive computational framework 
that could generate synthesizable molecules with preferable proper-
ties. This would require not only a substantial amount of data to 
train sophisticated models, but also necessary domain knowledge 
and human experts looped into the learning process.

In vitro validation. Ultimately, testing of the in silico-generated 
molecules in a laboratory will be needed to validate the computa-
tional methods. Although most existing computational methods 

are developed in academic environments and thus cannot be easily 
tested on purchasable or proprietary molecule libraries, and their 
generated molecules cannot be easily synthesized as we discussed 
earlier, a few successful stories43 have demonstrated that powerful 
computational methods have great potential to truly make new dis-
coveries that can succeed in laboratory validation. Analogous to this 
molecule optimization and discovery process using deep learning 
approaches is AlphaFold44, a deep learning method that predicts 
protein folding structures. The breakthrough from AlphaFold in 
solving a 50-year-old grand challenge in biology offers strong evi-
dence of the tremendous power of modern learning approaches, 
which should not be underestimated. Still, collaborations with the 
pharmaceutical industry and in vitro testing are very much needed 
to truly translate the progress with computational methods into a 
real impact. In addition, effective sampling and/or prioritization of 
generated molecules to identify a feasible, small set of molecules for 
small-scale in vitro validation could be a practical solution. This will 
require the development of new sampling schemes over molecule 
subspaces and/or the learning of molecule prioritization45,46 within 
the molecule generation process. Meanwhile, large-scale in vitro 
validation of in silico-generated molecules is a challenging but 
interesting future research direction.

Other issues in computational molecule optimization. A limita-
tion of Modof-pipe is that it employs a local greedy optimization 
strategy: in each iteration, the input molecules to Modof will be 
optimized to the best, and if the optimized molecules do not have 
better properties, they will not go through additional Modof itera-
tions. Detailed discussions about local greedy optimization are pro-
vided in Supplementary Section 13.1. In addition to the partition 
coefficient, there are a lot of factors (for example, toxicity and syn-
thesizability) that need to be considered to develop a molecule into 
a drug. Discussions about multi-property optimization are available 
in Supplementary Section 13.2. Target-specific molecule optimiza-
tion is also discussed in Supplementary Section 13.3. The Modof 
framework could also be used for compounds or substance prop-
erty optimization in other application areas (for example, melting 
or boiling points for volatiles). Related discussions are presented in 
Supplementary Section 13.4.
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0.7295 0.8458 0.8881 0.9134 0.9196 0.9260

c

0.5312
DRD2: 0.1039
QED: 0.4273
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DRD2: 0.4939
QED: 0.4849
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DRD2: 0.9076
QED: 0.5282

1.6302
DRD2: 0.9413
QED: 0.6889

1.7014
DRD2: 0.9528
QED: 0.7486

Fig. 3 | Modof-pipe examples for DRD2, QeD and multi-property optimization. a, Modof-pipe examples for DrD2 optimization. b, Modof-pipe examples 
for QED optimization. c, Modof-pipe examples for multi-property optimization of DrD2 and QED. Modified fragments in each step are highlighted in red. 
Numbers associated with Mx are the corresponding property values.
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Conclusions. Modof optimizes molecules at one disconnection site 
at a time by learning the difference between molecules before and 
after optimization. With a much less complex model, it achieves 
substantially better or similar performance to state-of-the-art 
methods. In addition to the limitations and corresponding future 
research directions that have been discussed above, another limita-
tion with Modof is that, in Modof, the modification happens at the 
periphery of molecules. Although this is very common in in vitro 
lead optimization, we are currently investigating how Modof can be 
enhanced to modify the internal regions of molecules, if needed, by 
learning from proper training data with such regions. Additionally, 
we hope to integrate domain-specific knowledge in the Modof 
learning process to facilitate increased explainability in the learning 
and generative process.

Methods
Modof modifies one fragment (for example, a ring system, a linker, a side chain) of 
a molecule at a time, and thus only encodes and decodes the fragment that needs 
modification. The site of M where the fragment is modified is referred to as the site 
of disconnection and denoted nd, which corresponds to a node in the junction tree 
representation (discussed in the section Molecule representations and notations). 
Figure 1 presents an overview of Modof. All the algorithms are presented in 
Supplementary Section 14. Discussions on the single-disconnection-site rationale 
are presented in Supplementary Section 5.

Molecule representations and notations. We represent a molecule Mx using a 
molecular graph Gx and a junction tree Tx. Gx is denoted Gx = (Ax,Bx), where 
Ax is the set of atoms in Mx, and Bx is the set of corresponding bonds. In the 
junction tree representation, Tx = (Vx, Ex) (ref. 8), all the rings and bonds in 
Mx are extracted as nodes in Vx, and nodes with common atoms are connected 
with edges in Ex. Thus, each node n ∈ Vx is a substructure (for example, a ring, 
a bond and its connected atoms) in Gx. We denote the atoms included in node n 
as Ax(n) and refer to the nodes connected to n in Tx as its neighbours, denoted 
Nx(n). Thus, each edge (nu, nv) ∈ Ex actually corresponds to the common atoms 
Ax(nu) ∩ Ax(nv) between nu and nv. When no ambiguity arises, we will eliminate 
subscript x in the notations. Note that atoms and bonds are the terms used for 
molecular graph representations, and nodes and edges are used for junction tree 
representations. In this Article, all the embedding vectors are by default column 
vectors, represented by lower-case bold letters; all the matrices are represented by 
upper-case letters. Key notations are listed in Table 3.

Molecular difference encoder (Modof-encoder). Given two molecules (Mx, 
My), Modof (algorithm 1 in Supplementary Section 14) learns and encodes the 
difference between Mx and My using message passing networks47 over graphs Gx 
and Gy, denoted graph message passing networks (GMPNs), and over junction 
trees Tx and Ty, denoted tree message passing networks (TMPNs), in three steps.

Step 1 Atom embedding over graphs (GMPN). Modof first represents atoms using 
embeddings to capture atom types and their local neighbourhood structures by 
propagating messages along bonds over molecular graphs. Modof uses a one-hot 
encoding xi to represent the type of atom ai, and a one-hot encoding xij to represent 
the type of bond bij connecting ai and aj. Each bond bij is associated with two 
messages mij and mji encoding the messages propagating from atom ai to aj and 
vice versa. The m(t)

ij  in the tth iteration of the GMPN is updated as follows:

m(t)
ij = ReLU (Wa

1xi + Wa
2xij + Wa

3
∑

ak∈N(ai)\{aj}
m(t−1)

ki ),

where m(0)
ki  is initialized as zero, and Wa

i  (i = 1, 2, 3) are the learnable parameter 
matrices. Thus, the message m(t)

ij  encodes the information of all length-t paths 
passing through bij to aj in the graph. After ta iterations of message passing, the 
atom embedding aj is updated as follows:

aj = ReLU (Ua
1xj + Ua

2
∑

ai∈N(aj)
m(1···ta)

ij ),

where m(1···ta)
ij  is the concatenation of message vectors from all iterations, and Ua

1 
and Ua

2 are learnable parameter matrices. Thus, the atom embedding aj aggregates 
information from aj’s ta-hop neighbours, as in Xu et al.48, to improve the atom 
embedding representation power.

Step 2 Node embedding over junction trees (TMPN). Modof encodes nodes in 
junction trees into embeddings to capture their local neighbourhood structures 
by passing messages along the tree edges. To produce rich representations of 
nodes, Modof first aggregates the information of atoms within a node nu into 
an embedding su, and the information of atoms shared by a tree edge euv into an 
embedding suv through the following pooling:

su =
∑

ai∈A(nu)
ai , (1)

suv =
∑

ai∈A(nu)∩A(nv)
ai . (2)

Modof also uses a learnable embedding xu to represent the type of node nu. Thus, 
m(t)

uv  from node nu to nv in the tth iteration of TMPN is updated as follows:

m(t)
uv = ReLU(Wn

1ReLU (Wn
2 [xu;su]) + Wn

3suv + Wn
4

∑

nw∈N(nu)\{nv}

m(t−1)
wu ),

where [xu; su] is a concatenation of xu and su so as to represent comprehensive node 
information, and Wn

i  (i = 1, 2, 3, 4) are learnable parameter matrices. Similarly to 
the messages in GMPNs, m(t)

uv  encodes the information of all length-t paths passing 
through edge euv to nv in the tree. After tn iterations, the node embedding nv is 
updated as follows:

nv = ReLU(Un
1ReLU (Un

2 [xv;sv]) + Un
3
∑

nu∈N(nv)
m(1···tn)

uv ), (3)

where Un
i  (i = 1, 2, 3) are the learnable parameter matrices.

Step 3 Difference embedding. The difference embedding between Mx and My is 
calculated by pooling the node embeddings from Tx and Ty as follows:

h−
xy =

∑
nx∈{Vx\Vy}∪{nd∈Vx}

nx,

h+
xy =

∑
ny∈{Vy\Vx}∪{nd∈Vy}

ny,

where nx/ny are the embeddings of nodes only appearing in and learned from  
Tx/Ty via the TMPN. Note that nd in the above equations is the site of 
disconnection, and both Tx and Ty have the common node nd. Thus, h−

xy essentially 
represents the fragment that should be removed from Mx at nd and h+

xy represents 
the fragment that should be attached to Mx at nd afterwards so as to modify Mx 
into My. We will discuss how to identify nd, and the removed and new attached 
fragments at nd in Mx and My in the section ‘Molecular difference decoder 
(Modof-decoder)’.

As in VAE49, we map the two difference embeddings h−
xy and h+

xy into two 
normal distributions by computing the mean and log variance with fully connected 
layers μ(⋅) and Σ(⋅). We then sample the latent vectors z−xy and z+xy from these two 
distributions and concatenate them into one latent vector zxy, that is:

z−xy ∼ N(μ
−
(h−

xy ), Σ
−
(h−

xy )),

z+xy ∼ N(μ
+
(h+

xy), Σ
+
(h+

xy)),

zxy = [z−xy ;z
+
xy ]. (4)

Thus, zxy encodes the difference between Mx and My.

Molecular difference decoder (Modof-decoder). Following the autoencoder idea, 
Modof decodes the difference embedding zxy (equation (4)) into edit operations 
that change Mx into My. Specifically, Modof first predicts a node nd in Tx as the 
disconnection site. This node will split Tx into several fragments, and the number 

Table 3 | Notation

Notation Meaning

M = (G, T ) Molecule represented by G and T

G = (A,B) Molecular graph with atoms A and bonds B

T = (V , E) Junction tree with nodes V and edges E

a An atom in G

bij A bond connecting atoms ai and aj in G

n A node in T

euv An edge connecting nodes nu and nv in T

nd Site of disconnection

A(n), N (n) Atoms included in a tree node n, n’s neighbours
x Atom type embedding

m(1⋯t) Concatenation of m(1), m(2), ... m(t)
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of resulting fragments depends on the number of nd’s neighbouring nodes N (nd). 
Modof then predicts which frag ments to remove from Mx and merges the 
remaining fragments with nd into an intermediate representation M∗ = (G∗, T ∗). 
After that, Modof attaches new fragments sequentially, starting from nd to 
(G∗, T ∗). The decoding process (algorithm 2 in Supplementary Section 14) has 
four steps.

Step 1 Disconnection site prediction. Modof predicts a disconnection score for each 
T

′
x s node nu as follows:

fd(nu) = (wd
)

T tanh(Wd
1nu + Wd

2z) , ∀ nu ∈ Vx, (5)

where nu is nu’s embedding (equation (3)) in Tx, and wd and Wd
i  (i = 1, 2) are the 

learnable parameter vector and matrices, respectively. The node with the largest 
disconnection score is predicted as the disconnection site nd. Intuitively, Modof 
considers the neighbouring or local structures of nu (in nu) and ‘how likely’ edit 
operations (represented by z) can be applied at nu. To learn fd, Modof uses the negative 
log-likelihood of the ground-truth disconnection site in tree Tx as the loss function.

Step 2 Removal fragment prediction. Modof predicts which fragments separated by 
nd should be removed from Tx. For each node nu connected to nd, Modof predicts 
a removal score as follows:

fr(nu) = σ((wr
)

T ReLU (Wr
1nu + Wr

2z
−
)) , ∀eud ∈ Ex, (6)

where σ(⋅) is the sigmoid function, and wr and Wr
i  (i = 1, 2) are the learnable 

parameter vector and matrices, respectively. The fragment with a removal score 
greater than 0.5 is predicted to be removed. Thus, there could be multiple or 
no fragments removed. Intuitively, Modof considers the local structures of 
the fragment (that is, nu) and ‘how likely’ this fragment should be removed 
(represented by z−). To learn fr, Modof minimizes the binary cross-entropy loss to 
maximize the predicted scores of ground-truth removed fragments in Tx.

Step 3 Intermediate representation. After fragment removal, Modof merges the 
remaining fragments together with the disconnection site nd into an intermediate 
representation M∗ = (G∗, T ∗). M∗ may not be a valid molecule after some 
fragments are removed (some bonds are broken). It represents the scaffold of 
Mx that should remain unchanged during optimization. Modof first removes a 
fragment so as to identify such a scaffold and then adds a fragment to the scaffold 
to modify the molecule.

Step 4 New fragment attachment. Modof modifies M∗ into the optimized My by 
attaching a new fragment (algorithm 3 in Supplementary Section 14). Modof 
uses the following four predictors to sequentially attach new nodes to T ∗. The 
predictors will be applied iteratively, starting from nd, on each newly attached node 
in T ∗. The attached new node in the tth step is denoted n∗(t) (n∗(0) = nd), and 
the corresponding molecular graph and tree are denoted G∗(t) (G∗(0) = G

∗) and 
T

∗(t) (T ∗(0) = T
∗), respectively.

Step 4.1 Child connection prediction (NFA-cp). Modof first predicts whether n∗(t) 
should have a new child node attached to it, with the probability calculated as 
follows:

fc(n∗(t)) = σ((wc
)

T ReLU (Wc
1n

∗(t)
+ Wc

2z
+
)), (7)

where n∗(t) is the embedding of node n∗(t) learned over (T ∗(t),G∗(t)) (equation 
(3)), z+ (equation (4)) indicates how much T ∗(t) should be expanded, and wc and 
Wc

i  (i = 1, 2) are the learnable parameter vector and matrices. If fc(n∗(t)) is above 
0.5, Modof predicts that n∗(t) should have a new child node and thus child node 
type prediction will follow; otherwise, the optimization process stops at n∗(t). To 
learn fc, Modof minimizes a binary cross-entropy loss to maximize the probabilities 
of ground-truth child nodes. Note that n∗(t) may have multiple children, so, once 
a child is generated as in the following steps and attached to T ∗(t), another child 
connection prediction will be conducted at n∗(t) with the updated embedding 
n∗(t)) over the expanded (T ∗(t),G∗(t)). The above process is iterated until n∗(t) is 
predicted to have no more children.

Step 4.2 Child node type prediction (NFA-ntp). The new child node of n∗(t) is 
denoted nc. Modof predicts the type of nc by calculating the probabilities of all 
types of node that can be attached to n∗(t) as follows:

fl(nc) = softmax(Ul
× ReLU (Wl

1n
∗(t)

+ Wl
2z

+
)), (8)

where softmax(⋅) converts a vector of values into probabilities, and Ul and Wl
i 

(i = 1, 2) are learnable matrices. Modof assigns the new child nc the node type 
xc corresponding to the highest probability. Modof learns fl by minimizing the 
cross-entropy to maximize the likelihood of true child node types.

Step 4.3 Attachment point prediction (NFA-app). If node n∗(t) is predicted to 
have a child node nc, the next step is to connect n∗(t) and nc. If n∗(t) and nc share 

one or multiple atoms (for example, n∗(t) and nc form a fused ring and thus share 
two adjacent atoms) that can be unambiguously determined as the attachment 
point(s) based on chemical rules, Modof will connect n∗(t) and nc via the atom(s). 
Otherwise, if n∗(t) and nc have multiple connection configurations, Modof predicts 
the attachment atoms at n∗(t) and nc, respectively.

Step 4.3.1 Attachment point prediction at the parent node (NFA-app-p). Modof 
scores each candidate attachment point at parent node n∗(t), denoted a∗p, using

gp(a∗p ) = (wp
)

T tanh(Wp
1a

∗
p + Wp

2xc + Wp
3 × ReLU (Un

2 [x
∗(t) ;̃s∗(t)]) + Wp

4z
+
),
(9)

where a∗p =
∑

ai∈a∗p
ãi represents the embedding of a∗p (a∗p could be an atom or 

a bond), ãi is calculated by GMPN over G∗(t), Un
2 is as in equation (3), s̃∗(t) is the 

sum of the embeddings of all atoms in n∗(t) (equation (1)), and wp and Wp
i  (i = 1, 

2, 3, 4) are the learnable vector and matrices. Modof intuitively measures how 
likely a∗p can be attached to nc by looking at a∗p its own (that is, a∗p), its context in 
n∗(t) (that is, x∗(t) and neighbours s̃∗(t)), its connecting node nc (that is, xc) and 
how much n∗(t) should be expanded (represented by z+). The candidate with 
the highest score is selected as the attachment point in n∗(t) . Modof learns gp by 
minimizing the negative log-likelihood of ground-truth attachment points.

Step 4.3.2 Attachment point prediction at the child node (NFA-app-c). Modof 
scores each candidate attachment point at the child node nc, denoted a∗c , using

gc(a∗c ) = (wo
)

T tanh(Wo
1a

∗
c + Wo

2xc + Wo
3a

∗
p + Wo

4z
+
), (10)

where a∗c =
∑

ai∈a∗c
ãi represents the embedding of a∗c  (a∗c  could be an atom or a 

bond) and ãi is the embedding of ai calculated over nc via GMPN, and wo and Wo
i  

(i = 1, 2, 3, 4) are the learnable parameters. Modof intuitively measures how likely 
candidate a∗c  can be attached to a∗p at n∗(t) by looking at a∗c  its own (that is, a∗c ), the 
features of a∗p (that is, a∗p), its context in nc (that is, xc) and how much n∗(t) should 
be expanded (that is, z+). The candidate with the highest score is selected as the 
attachment point in nc. Modof learns gc by minimizing the negative log-likelihood 
of ground-truth attachment points.

Valence checking. In NFA-app, Modof incorporates a valence check to only 
generate and predict legitimate candidate attachment points that do not violate 
valence laws.

Molecule size constraint. Following You et al.9, for plogP optimization, we limit the 
size of the optimized molecules to at most 38 (38 is the maximum number of atoms 
in the molecules in the ZINC dataset23). With this molecule size constraint, Modof 
can avoid increasing plogP by trivially increasing the molecule size, which may 
have the effect of improving plogP (ref. 50).

Sampling schemes. In the decoding process, for each Mx, Modof samples 20 times 
from the latent space of z and optimizes Mx accordingly. Among all decoded 
molecules satisfying the similarity constraint with Mx, Modof selects the one with 
the best property as its output.

Modof pipelines. A pipeline of Modof models, denoted Modof-pipe (algorithm 
4 in Supplementary Section 14), is constructed with a series of identical Modof 
models, with the output molecule from one Modof model as the input to the next. 
Given an input molecule M(t) to the tth Modof model (M(0) = M), Modof first 
optimizes M(t) into M(t + 1) as the output of this model. M(t + 1) is then fed into the 
(t + 1)th model if it satisfies the similarity constraint sim(M(t + 1), M) > δ and the 
property constraint plogP(M(t + 1)) > plogP(M(t)). Otherwise, M(t) is output as the 
final result and Modof-pipe stops. In addition to Modof-pipe, which outputs one 
optimized molecule for each input molecule, Modof-pipem has been developed 
to output multiple optimized molecules for each input molecule. Details about 
Modof-pipem are provided in Supplementary Section 2.

The advantages of this iterative, one-fragment-at-one-time optimization 
process include the following: (1) it is easier to control intermediate optimization 
steps so as to result in optimized molecules of desired similarities and properties; 
(2) it is easier to optimize multiple fragments in a molecule that are far apart; (3) 
it follows a rational molecule design process11 and thus could enable more insights 
and inform in vitro lead optimization.

Model training. During model training, we apply teacher forcing to feed the 
ground truth instead of the prediction results to the sequential decoding process. 
Following the idea of VAE, we minimize the following loss function to maximize 
the likelihood P(My∣z, Mx). Thus, the optimization problem is formulated as

min
Θ

−βDKL(qϕ(z|Mx,My) ∥ pθ(z)) + Eqϕ(z|Mx,My)[log pθ(My|z, Mx)], (11)

where Θ is the set of parameters, qϕ() is an estimated posterior probability 
function (Modof-encoder), pθ(My∣z, Mx) is the probabilistic decoder representing 
the likelihood of generating My given the latent embedding z and Mx, and the 
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prior pθ(z) follows N (0, I). In the above problem, DKL() is the Kullback–Leibler 
divergence between qϕ() and pθ(). Specifically, the second term represents the 
prediction or empirical error, defined as the sum of all the loss functions in the 
above six predictions (equations (5) to (10)). We use AMSGRAD51 to optimize the 
learning objective.

Data availability
The data used in this manuscript are available publicly from Chen et al.52 and 
https://github.com/ziqi92/Modof. Source data are provided with this paper.

Code availability
The code for Modof, Modof-pipe and Modof-pipem is publicly available from Chen 
et al.52 and https://github.com/ziqi92/Modof.
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